Line 34: | Line 34: | ||
background-color:rgb(51,51,51) !important; | background-color:rgb(51,51,51) !important; | ||
line-height:1; | line-height:1; | ||
+ | } | ||
+ | /*--------大圖----------*/ | ||
+ | @media screen and (min-width: 768px) { | ||
+ | .img-container{ | ||
+ | height:100vh ; | ||
+ | overflow:hidden ; | ||
+ | width:100%; | ||
+ | } | ||
+ | .main-img{ | ||
+ | top: 0; | ||
+ | bottom: 0; | ||
+ | left: 0; | ||
+ | right: 0; | ||
+ | width: 100%; | ||
+ | margin: auto; | ||
+ | z-index:999; | ||
+ | } | ||
+ | } | ||
+ | @media screen and (orientation: portrait) { | ||
+ | .img-container{ | ||
+ | height:auto; | ||
+ | overflow:none; | ||
+ | width:100%; | ||
+ | } | ||
+ | .main-img{ | ||
+ | top: 0; | ||
+ | bottom: 0; | ||
+ | left: 0; | ||
+ | right: 0; | ||
+ | width: 100%; | ||
+ | margin: auto; | ||
+ | z-index:999; | ||
+ | } | ||
} | } | ||
+ | |||
+ | |||
+ | |||
/*---------------------*/ | /*---------------------*/ | ||
+ | |||
#modelingContainer { | #modelingContainer { | ||
width::100%; | width::100%; | ||
Line 89: | Line 126: | ||
</head> | </head> | ||
<body> | <body> | ||
+ | <!--圖片--> | ||
+ | <div class="img-container"> | ||
+ | <img src="https://static.igem.org/mediawiki/2016/7/77/NCTU_study.png" class="main-img" width="100%"> | ||
+ | </div> | ||
+ | <div> | ||
+ | <img src='https://static.igem.org/mediawiki/2016/f/f8/Web.png' class="web img-position" height="200px" id="web"> | ||
+ | </div> | ||
+ | <div> | ||
+ | <img src="https://static.igem.org/mediawiki/2016/6/65/Right_%281%29.png" class="right img-position" id="right" height="600px"> | ||
+ | </div> | ||
+ | |||
+ | |||
+ | <!--------------------wiki content--------------------------> | ||
Revision as of 07:00, 15 October 2016
Software—Toxin selection
I. Purpose
To prove the concept of Pantide, we wanted to select three existing distinct spider toxin peptides with probable oral toxicity against the testee-Spodoptera litura(Tobacco cutworms). For the actual application of Pantide we, we needed some more knowledge base of peptides which have different molecular targets to promote Pantide applying to other orders of insects, and a different toxic mechanism to regularly alternate so as to avoid drug resistance.
To date, about 1500 toxin peptides from 97 spider species have been studied, though the number of spider toxin peptides is conservatively estimated up to 10 million. [1] So, our purpose is to establish a database collecting the information of those peptides, such as molecular target, taxon, toxicity, sequence. According to the database, if we first choose a target insect, then we can easily find out groups of suitable peptides used as Pantide. Therefore, we also need to create a method to select peptides from the database.