Difference between revisions of "Team:Aix-Marseille/Collaborations"

(Equations)
(Equations)
Line 31: Line 31:
  
 
\frac{\partial}{\partial t} W_\mathbf{z} (\mathbf{z},t) + \nabla_\mathbf{z}\cdot[(\beta\cdot\overline{\mathbf{R}}(\mathbf{z},c)W_\mathbf{z}(\mathbf{z},t))] = 2 \int \sigma (\mathbf{z',c}) p(\mathbf{z,z',c}) W_{\mathbf{Z}}(\mathbf{z'},t)\mathrm{d}v' - (D+\sigma (\mathbf{z,c})) W_{\mathbf{Z}}(\mathbf{z},t)  (1)
 
\frac{\partial}{\partial t} W_\mathbf{z} (\mathbf{z},t) + \nabla_\mathbf{z}\cdot[(\beta\cdot\overline{\mathbf{R}}(\mathbf{z},c)W_\mathbf{z}(\mathbf{z},t))] = 2 \int \sigma (\mathbf{z',c}) p(\mathbf{z,z',c}) W_{\mathbf{Z}}(\mathbf{z'},t)\mathrm{d}v' - (D+\sigma (\mathbf{z,c})) W_{\mathbf{Z}}(\mathbf{z},t)  (1)
 
+
\\
 
\\
 
\\
 
\frac{d\mathbf{c}}{dt} = D(\mathbf{c_f} - \mathbf{c} ) + \mathbf{\gamma}\cdotp \int  \bar{\mathbf{R}}(\mathbf{z,c}) W_{\mathbf{Z}}(\mathbf{z},t)\mathrm{d}v  (2)
 
\frac{d\mathbf{c}}{dt} = D(\mathbf{c_f} - \mathbf{c} ) + \mathbf{\gamma}\cdotp \int  \bar{\mathbf{R}}(\mathbf{z,c}) W_{\mathbf{Z}}(\mathbf{z},t)\mathrm{d}v  (2)
 +
\\
 +
\\
 +
\begin{tabular}{p{0.10\linewidth}p{0.75\linewidth}}
 +
 +
$\mathbf{z}                          $& Vector for internal state of a bacteria.\\
 +
$\mathbf{c}                          $& Time dependant vector for conditions.\\
 +
$W_{\mathbf{Z}}(\mathbf{z},t)        $& Distribution of bacteria in $\mathbf{z}$ space at time $t$.\\
 +
$\bar{\mathbf{R}}(\mathbf{z,c})      $& The expected value or the reaction rate vector function of $\mathbf{z}$ and $\mathbf{c}$.\\
 +
$\sigma (\mathbf{z',c})              $& Rate of fision for bacteria as a scalar function of $ \mathbf{z,c} $.\\
 +
$p(\mathbf{z,z',c})                  $& Partitioning probability of generating a child in state $\mathbf{z}$ from a parent
 +
                                        in state $\mathbf{z'}$ given the conditions $\mathbf{c}$.\\
 +
$\nabla_{\mathbf{Z}}\cdot \mathbf{V} $& $\sum \frac{\partial}{\partial z_i}\mathbf{V}_i $\\
 +
$\textrm{d}v'                        $& Integral over state space $v'$ .\\
 +
$D                                  $& Dilution rate of the culture (for fermenters). \\
 +
$\beta                              $& Stochiometric matrix for cellular substances.\\
 +
$\gamma                              $& Stochiometric matrix for extra-cellular substances.\\
 +
 +
\end{tabular}\\
  
 
</div>
 
</div>

Revision as of 11:22, 17 October 2016