Difference between revisions of "Team:Aix-Marseille/Collaborations"

(Equations)
(Equations)
Line 124: Line 124:
 
<div lang="latex">\gamma \cdotp \bar{\mathbf{R}}(\mathbf{z,c}) = \alpha \mu(\mathbf{z},S)</div>(5)<br/><br/>
 
<div lang="latex">\gamma \cdotp \bar{\mathbf{R}}(\mathbf{z,c}) = \alpha \mu(\mathbf{z},S)</div>(5)<br/><br/>
  
Where alpha is the growth yield in <div lang="latex">g/l/cell</div>. The remaining functions and parameters in equations 1 and 2 are the division rate <div lang="latex">\sigma (\mathbf{z,c})</div> and the partitioning 2 function <div lang="latex">p(\mathbf{z,z',c})</div>. There is less consensus in the litterature for an at least empirically appropriate form for these equations. To remain simple we propose:
+
Where alpha is the growth yield in <div lang="latex">g/l/cell</div>. The remaining functions and parameters in equations 1 and 2 are the division rate <div lang="latex">\sigma (\mathbf{z,c})</div> and the partitioning 2 function <div lang="latex">p(\mathbf{z,z',c})</div>. There is less consensus in the litterature for an at least empirically appropriate form for these equations. To remain simple we propose:<br/><br/>
  
 
<div lang="latex">
 
<div lang="latex">
 
\sigma (\mathbf{z,c}) = \sigma \times H[2.0] = 0 & \text{if } z_0 < 2.0 \\
 
\sigma (\mathbf{z,c}) = \sigma \times H[2.0] = 0 & \text{if } z_0 < 2.0 \\
 
\sigma (\mathbf{z,c}) = \sigma \times H[2.0] = \sigma & \text{if } z_0 \geq 2.0
 
\sigma (\mathbf{z,c}) = \sigma \times H[2.0] = \sigma & \text{if } z_0 \geq 2.0
</div>
+
</div><br/><br/>
 +
 
 +
Here we assume that there is a fixed rate of division <div lang="latex">\sigma</div> once cells are big enough to divide (<div lang="latex">H[]</div> is the Heaviside function).
 
</html>
 
</html>
  

Revision as of 15:41, 17 October 2016