(→Proposition: Adding contention) |
(avec mathjax) |
||
Line 1: | Line 1: | ||
{{:Team:Aix-Marseille/Template-Top|Collaborations}} | {{:Team:Aix-Marseille/Template-Top|Collaborations}} | ||
− | + | <html><script src="https://2015.igem.org/common/MathJax-2.5-latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script> | |
− | <html> | + | <script type="text/x-mathjax-config"> |
− | + | MathJax.Hub.Config({ | |
− | + | TeX: { equationNumbers: { autoNumber: "AMS" } }, | |
− | <script | + | tex2jax: { |
− | </ | + | inlineMath: [['$','$'], ['\\(','\\)']], |
− | + | processEscapes: true | |
− | + | } | |
− | + | }); | |
− | : | + | </script> |
− | + | ||
− | } | + | |
− | + | ||
− | </ | + | |
− | + | ||
</html> | </html> | ||
− | |||
== Our collaborations == | == Our collaborations == | ||
Line 23: | Line 17: | ||
[[File:T--Aix-Marseille--Toulouse_logo.jpg|link=https://2016.igem.org/Team:Toulouse_France|300px|350px|center]] | [[File:T--Aix-Marseille--Toulouse_logo.jpg|link=https://2016.igem.org/Team:Toulouse_France|300px|350px|center]] | ||
− | ==== | + | ====Introduction==== |
We conceived a model in order to handle questions concerning the following situation: | We conceived a model in order to handle questions concerning the following situation: | ||
A bacterial growth is carried out in a bioreactor, continually supplied in substrate. | A bacterial growth is carried out in a bioreactor, continually supplied in substrate. | ||
Line 35: | Line 29: | ||
As a plasmids can be a disadvantage for growth (energy spent into replicating processes) or a advantage (protection against a toxin) this question is hard to answer. But in this situation, where one type of plasmid can influence on the presence of the other type of plasmid in (and reciprocally) in the same bacteria, the question become too tough to answer and only a mathematical model can resolve such a interrogation! | As a plasmids can be a disadvantage for growth (energy spent into replicating processes) or a advantage (protection against a toxin) this question is hard to answer. But in this situation, where one type of plasmid can influence on the presence of the other type of plasmid in (and reciprocally) in the same bacteria, the question become too tough to answer and only a mathematical model can resolve such a interrogation! | ||
− | ==== | + | ====Equations==== |
=====Development of the model===== | =====Development of the model===== | ||
− | In 1967 Fredrickson et al. | + | In 1967 Fredrickson et al. <ref name="Fredrickson1967" group="toulouse">[https://pdfs.semanticscholar.org/1873/0fa936b17078cfe2b0ab1f74d44eae002758.pdf Fredrickson AG, Ramkrishna D, Tsuchiya H (1967) Statistics and dynamics of correct pro- caryotic cell populations. Mathematical Biosciences 1: 327–374.]</ref> studied mathematically |
+ | development of a bacterial population, under the assumptions of a large | ||
+ | population of independant bacteria in a well mixed solution of constant | ||
+ | volume. The large population ensures that for the population the | ||
+ | expectation value is a good estimate of the average. The bacteria being | ||
+ | independant ensures that the behaviour of each individual depends only | ||
+ | on its internal state $\mathbf{z}$ and the conditions $\mathbf{c}$ which | ||
+ | are the same for all individuals. The volume is well mixed so the | ||
+ | conditions $\mathbf{c}$ which are the same everywhere. The volume is | ||
+ | constant so that the population caracteristics can be evaulated by | ||
+ | integration over the volume. In their development $\mathbf{z}$ and | ||
+ | $\mathbf{c}$ are considered to be arbitrary vector quantities. | ||
− | From this starting point they develop a pair of master equations of | + | From this starting point they develop a pair of *master equations of |
− | to describe the evolution of the population: | + | change* to describe the evolution of the population: |
− | < | + | <nowiki> |
− | + | \begin{equation} | |
− | + | \begin{gathered} | |
− | \frac{\partial}{\partial t} W_\mathbf{ | + | \frac{\partial}{\partial t} W_{\mathbf{Z}}(\mathbf{z},t) |
− | + | + \nabla_{\mathbf{Z}} \cdotp [(\mathbf{\beta} \cdotp \bar{\mathbf{R}}(\mathbf{z,c}) W_{\mathbf{Z}}(\mathbf{z},t)] \\ | |
− | \\ | + | = 2 \int \sigma (\mathbf{z',c}) p(\mathbf{z,z',c}) W_{\mathbf{Z}}(\mathbf{z'},t)\mathrm{d}v' |
− | = 2 \int \sigma (\mathbf{z',c}) p(\mathbf{z,z',c}) W_{\mathbf{Z}}(\mathbf{z'},t)\mathrm{d}v' - (D+\sigma (\mathbf{z,c})) W_{\mathbf{Z}}(\mathbf{z},t) | + | - (D+\sigma (\mathbf{z,c})) W_{\mathbf{Z}}(\mathbf{z},t)\end{gathered}$$ |
− | \ | + | \end{equation} |
− | \ | + | \begin{equation} |
− | + | \frac{d\mathbf{c}}{dt} | |
− | + | = D(\mathbf{c_f} - \mathbf{c} ) + \mathbf{\gamma} | |
− | \frac{d\mathbf{c}}{dt} = D(\mathbf{c_f} - \mathbf{c} ) + \mathbf{\gamma}\cdotp \int \bar{\mathbf{R}}(\mathbf{z,c}) W_{\mathbf{Z}}(\mathbf{z},t)\mathrm{d}v | + | \cdotp \int \bar{\mathbf{R}}(\mathbf{z,c}) W_{\mathbf{Z}}(\mathbf{z},t)\mathrm{d}v |
− | + | \end{equation} | |
− | </ | + | </nowiki> |
In these equations the various symbols are as follows: | In these equations the various symbols are as follows: | ||
{| class="wikitable" | {| class="wikitable" | ||
− | | | + | |$\mathbf{z}$ |
| Vector for internal state of a bacteria. | | Vector for internal state of a bacteria. | ||
|- | |- | ||
− | | | + | |$\mathbf{c}$ |
| Time dependant vector for conditions. | | Time dependant vector for conditions. | ||
|- | |- | ||
− | | | + | |$W_\mathbf{z} (\mathbf{z},t)$ |
| Distribution of bacteria in '''z''', t space. | | Distribution of bacteria in '''z''', t space. | ||
|- | |- | ||
− | | | + | |$\overline{\mathbf{R}}(\mathbf{z},c)$ |
| The expected value or the reaction rate vector in '''z''', t space. | | The expected value or the reaction rate vector in '''z''', t space. | ||
|- | |- | ||
− | | | + | |$\sigma (\mathbf{z,c})$ |
| Rate of fision for bacteria in '''z''', '''c''' space. | | Rate of fision for bacteria in '''z''', '''c''' space. | ||
|- | |- | ||
− | | | + | |$p(\mathbf{z,z',c}))$ |
| Partitioning probability of generating a child in state z from a parent in state '''z''''. | | Partitioning probability of generating a child in state z from a parent in state '''z''''. | ||
|- | |- | ||
− | | | + | |$\nabla_\mathbf{z}\cdot\mathbf{V}$ |
− | | | + | |$\sum \frac{\partial}{\partial z_i}\mathbf{V}_i$ |
|- | |- | ||
− | | | + | |$\mathrm{d}v'$ |
| Integral over state space v' | | Integral over state space v' | ||
|- | |- | ||
− | | D | + | | $D$ |
| Dilution rate of the culture (for femrenters). | | Dilution rate of the culture (for femrenters). | ||
|- | |- | ||
− | | | + | |$\beta$ |
| Stochiometric matrix for cellular substances. | | Stochiometric matrix for cellular substances. | ||
|- | |- | ||
− | | | + | |$\gamma$ |
| Stochiometric matrix for extra-cellular substances. | | Stochiometric matrix for extra-cellular substances. | ||
|- | |- | ||
|} | |} | ||
− | + | {| class="wikitable" | |
− | + | |$\bar{\dot{\mathbf{V}}}(\mathbf{z,c}) = \mathbf{\beta} \cdotp \bar{\mathbf{R}}(\mathbf{z,c}) $ | |
− | + | |The expected internal state change rate vector. | |
− | + | |- | |
+ | |$ -\mathbf{\gamma} \cdotp \bar{\mathbf{R}}(\mathbf{z,c}) $ | ||
+ | |The expected consumation of substances in the environment by a cell in state $\mathbf{z}$ . | ||
+ | |} | ||
− | |||
− | + | Thus for a particular problem in hand it is necessary to chose | |
+ | $\mathbf{z}$ and $\mathbf{c}$ that represent the state of cells and the | ||
+ | media. Then the matrices and functions $\beta$, $\gamma$, | ||
+ | $\bar{\mathbf{R}}(\mathbf{z,c})$, $\sigma (\mathbf{z',c})$ and | ||
+ | $p(\mathbf{z,z',c}) $ need to be defined for the problem considered. | ||
+ | Finally the inital conditions $W_{\mathbf{Z}}(\mathbf{z},t)$ and | ||
+ | $\mathbf{c}_0 $ and growth conditions $D$ and $\mathbf{c}_f $ need to be | ||
+ | fixed. | ||
− | + | For the problem in hand, plasmid maintenance during growth with 2 | |
+ | different plasmids, and attempting to find a simple solution to the | ||
+ | problem we propose a 3 variable internal state vector: | ||
− | + | $$\mathbf{z} = \begin{bmatrix} z_0 \\ z_1 \\ z_2 \end{bmatrix} = | |
+ | \begin{bmatrix}\textrm{Cell maturity} \\ \textrm{count of plasmid 1} \\ \textrm{count of plasmid 2} \end{bmatrix}$$ | ||
− | + | In this internal state vector: $z_0$ is a mesure of the growth of the | |
+ | bacteria, encompassing such things as size, number of chromosomes and | ||
+ | mass; $z_1$ and $z_2$ represent the number of copies of each plasmid. | ||
+ | For the external conditions we propose simply the substrate | ||
+ | concentration $S$. The maturity parameter has a minimum value of 1 and | ||
+ | must increase to 2 before division can occur. | ||
− | + | For the rates of change of the internal state vector then we propose for | |
− | + | the bacterial maturity to extend the development presented in Shene et | |
+ | al. <ref name="Shene2003" group="toulouse">[https://dx.doi.org/10.1007/s00449-002-0313-x Shene, C., Andrews, B.A. & Asenjo, J.A. Bioprocess Biosyst Eng (2003) 25: 333. doi:10.1007/s00449-002-0313-x]</ref> to include 2 plasmids and incorporate the cell | ||
+ | maturity as a state variable. This gives: | ||
− | + | <nowiki> | |
− | + | \begin{equation} | |
+ | \dot{z}_0 (\mathbf{z},S) = \mu = \mu _{max} \frac{S}{K_S+S} \frac{K_{z_1}}{K_{z_1}+z_1^{m_1}} \frac{K_{z_2}}{K_{z_2}+z_2^{m_2}} | ||
+ | \end{equation} | ||
+ | </nowiki> | ||
− | + | Here $ \mu _{max}$ is the maximum growth rate $hr^{-1}$: | |
− | + | $\mu (\mathbf{z,S})$ the growth rate ; $K_S$ is the Monod constant in | |
+ | $g/l$ for the substrate; $K_{z_1}$ is the inhibition constant for plamid | ||
+ | number 1 in (plasmids per cell)$^{m_1}$, and $m_1$ the Hill coefficient | ||
+ | for the cooperativity of inhibition. $K_{z_2}$ and $m_2$ represent the | ||
+ | same parameters for plasmid 2. | ||
− | + | For plasmid replication rate we propose, again following Shene et | |
− | + | al. <ref name="Shene2003" group="toulouse" />, the empirical relationship : | |
− | < | + | <nowiki> |
+ | \begin{equation} | ||
+ | \dot{z}_1 (\mathbf{z},S) = | ||
+ | \begin{cases} | ||
+ | k_1 \frac{\mu (\mathbf{z},S)}{K_1 + \mu (\mathbf{z},S)} ( z_{1_{max}} - z_1 ) & \text{if } z_1 \geq 1.0 \\ | ||
+ | 0 & \text{if } 0.0 \leq z_1 < 1.0 \\ | ||
+ | \end{cases} | ||
+ | \end{equation} | ||
+ | </nowiki> | ||
− | + | This relation, and equivalent one for plasmid number 2 | |
+ | $\dot{z}_2 (\mathbf{z,S})$ is designed to satisfy the boundary | ||
+ | conditions of no reproduction if there is less than 1 plasmid in the | ||
+ | cell, and a maximum copy number of $z_{1_{max}}$. This introduces the | ||
+ | parameters $k_1$ and $K_1$ which are respectively the plasmid | ||
+ | replication rate (in $hr^{-1}$) and the inhibition constant (also in | ||
+ | $hr^{-1}$). The inhibition constant reduces plasmid replication rate at | ||
+ | slower growth rates. | ||
− | + | Notice that here we have directly defined | |
+ | $\bar{\dot{\mathbf{V}}}(\mathbf{z,c})$ rather than $\beta $ and | ||
+ | $\bar{\mathbf{R}}(\mathbf{z,c})$. For the growth yield we propose : | ||
− | + | <nowiki> | |
+ | \begin{equation} | ||
+ | \gamma \cdotp \bar{\mathbf{R}}(\mathbf{z,c}) = \alpha \mu(\mathbf{z},S) | ||
+ | \end{equation} | ||
+ | </nowiki> | ||
− | + | The remaining functions | |
− | + | and parameters in equations 1 and 2 are the division rate | |
− | + | $\sigma (\mathbf{z,c})$ and the partitioning function | |
− | + | $p(\mathbf{z,z',c}) $. There is less consensus in the litterature for an | |
+ | at least empirically appropriate form for these equations. To remain | ||
+ | simple we propose: | ||
− | + | <nowiki> | |
− | + | \begin{equation} | |
− | ( | + | \sigma (\mathbf{z,c}) = \sigma \times H[2.0] = |
− | + | \begin{cases} | |
− | + | 0 & \text{if } z_0 < 2.0 \\ | |
+ | \sigma & \text{if } z_0 \geq 2.0 | ||
+ | \end{cases} | ||
+ | \end{equation} | ||
+ | </nowiki> | ||
− | + | Here we assume that there is a fixed rate of division | |
− | + | $\sigma $ once cells are big enough to divide ($H[]$ is the Heaviside | |
+ | function). | ||
− | + | <nowiki> | |
+ | \begin{equation} | ||
+ | p(\mathbf{z,z',c}) = p(z_0,z'_0) \times p(z_1,z'_1) \times p(z_2,z'_2) | ||
+ | \end{equation} | ||
+ | \begin{equation} | ||
+ | p(z_0,z'_0) = \delta_{z_0,\frac{z'_0}{2}} = \begin{cases} | ||
+ | 1 & \text{if } z_0 = z'_0/2.0 \\ | ||
+ | 0 & \text{if } z_0 \ne z'_0/2.0. | ||
+ | \end{cases} | ||
+ | \end{equation} | ||
+ | \begin{equation} | ||
+ | p(z_1,z'_1) = 0.5^{z'_1} \begin{pmatrix} z_1 \\ z'_1 \\ \end{pmatrix} = 0.5^{z'_1} \frac{z'_1 !}{(z'_1-z_1)! z_1 !} | ||
+ | \end{equation} | ||
+ | </nowiki> | ||
− | < | + | In these equations we assume that the partitioning of the three internal |
+ | state variables are independant. That cells divide exactly in half, that | ||
+ | is the maturity parameter is exactly halved when the cells divide | ||
+ | ($\delta$ is a Kronecker delta function). That the two plasmids | ||
+ | segregate independantly and as individual plasmids according to a | ||
+ | binomial distribution. These assumptions are probably the most suspect | ||
+ | in the model. | ||
+ | |||
+ | This initial version of the model has no contention, that is $z_1$ and | ||
+ | $z_2$ do not influence the growth rate $\mu $. In order to develop the | ||
+ | model for the system envisaged this needs to be introduced. | ||
+ | |||
+ | Substituting into the equations 1 and 2 we obtain: | ||
+ | |||
+ | <nowiki> | ||
+ | \begin{multline} | ||
+ | \frac{\partial}{\partial t} W_{\mathbf{Z}}(\mathbf{z},t) | ||
+ [\nabla_{\mathbf{Z}} \cdotp \bar{\dot{\mathbf{Z}}}(\mathbf{z},S)] W_{\mathbf{Z}}(\mathbf{z},t) | + [\nabla_{\mathbf{Z}} \cdotp \bar{\dot{\mathbf{Z}}}(\mathbf{z},S)] W_{\mathbf{Z}}(\mathbf{z},t) | ||
− | + \sum_i \bar{\dot{z_i}} \times \frac{\partial}{\partial z_i} W_{\mathbf{Z}}(\mathbf{z},t)\\ | + | + \sum_i \bar{\dot{z_i}} \times \frac{\partial}{\partial z_i} W_{\mathbf{Z}}(\mathbf{z},t) \\ |
− | + | = 2 \sigma \int_{z'_0>2.0} \delta_{z_0,\frac{z'_0}{2}} \times 0.5^{z'_1+z'_2} \times \begin{pmatrix} z_1 \\ z'_1 \\ \end{pmatrix} | |
− | W_{\mathbf{Z}}(\mathbf{z'},t)\mathrm{d}v' \\ | + | \times \begin{pmatrix} z_2 \\ z'_2 \\ \end{pmatrix} \times |
− | + | W_{\mathbf{Z}}(\mathbf{z'},t)\mathrm{d}v' \\ | |
− | + | - (D+\sigma H[2.0] W_{\mathbf{Z}}(\mathbf{z},t)) | |
− | = D(c_f - c ) - \alpha \int \mu (\mathbf{z},S) W_{\mathbf{Z}}(\mathbf{z},t)\mathrm{d} | + | \end{multline} |
− | </ | + | \begin{equation} |
+ | \frac{d\mathbf{c}}{dt} | ||
+ | = D(c_f - c ) - \alpha \int \mu (\mathbf{z},S) W_{\mathbf{Z}}(\mathbf{z},t)\mathrm{d}v | ||
+ | \end{equation} | ||
+ | </nowiki> | ||
=====Objectives===== | =====Objectives===== | ||
− | The aim of studying the behaviour of this model is to investigate how growth conditions | + | The aim of studying the behaviour of this model is to investigate how |
+ | growth conditions $D, S_f$ and time modulate the development of the population | ||
+ | in state space $W_{\mathbf{Z}}(\mathbf{z},t)$. In particular we are interested in | ||
+ | finding how the number of bacteria without plasmids $W_{\mathbf{Z}}([z_0,0,0],t)$ in | ||
+ | the culture progresses, and how this depends on the various parameters in the model. | ||
=====Proposition: Adding contention===== | =====Proposition: Adding contention===== | ||
− | + | We need to introduce a modification to equation 3 (the state dependant | |
+ | growth rate) in which the equilibrium between $z_1$ and $z_2$ features. | ||
+ | This modification is to take into account that each toxin should be | ||
+ | inhibited by anti-toxin for maximal growth. A possibility is that we | ||
+ | consider that for each toxin anti-toxin pair: | ||
− | + | * the genes produce toxin at a constant rate dependant on the numberof copies $k_1\times z_1$, | |
− | + | * the anti-toxin genes produce anti-toxin at a rate dependant on the number of copies $k_2\times z_2$, | |
− | + | * anti-toxin instantly and irreversible kills the toxin in a stochiometric manner. | |
+ | * undestroyed toxin disappears at a constant rate, by dilution and other pathways $k_3$, | ||
+ | * the concentration of toxin is at a dynamic steady state, i.e. the rates of production and disappearance are equal. | ||
+ | * growth in inhibited in an exponential manner by free toxin with a characteristic $IC_{50}$. | ||
− | + | This model of toxin anti-toxin interaction takes into account the | |
− | + | bacteriostatic nature of most such toxins, and the presence of | |
− | + | measurable $IC_{50}$ values. Clearly a more realsitic model would need | |
− | + | to take into account cell volume, protein synthesis rates etc. | |
− | + | Nevertheless, this simple model gives: | |
− | + | <nowiki> | |
− | + | $$ | |
− | </ | + | \begin{align} |
+ | \mu &= \mu_{0} \times e^{-\frac{[Toxin]}{IC_{50}}} \\ | ||
+ | [Toxin] &= max(0,\frac{k_1z_1-k_2z_2}{k_3}) \\ | ||
+ | \mu &= \mu_{0} \times min(1.0,e^{-k_a(z_1-k_bz_2)}) \\ | ||
+ | k_a &= \frac{k_1}{k_3 \times IC_{50}} \\ | ||
+ | k_b &= \frac{k_2}{k_1} | ||
+ | \end{align} | ||
+ | $$ | ||
+ | </nowiki> | ||
− | + | Incorporating 2 toxin anti toxin pairs, if we assume | |
− | + | that the production rate ratio is the same for both, $k_b$, is | |
− | + | independant of the system we have: | |
− | + | ||
− | < | + | <nowiki> |
− | + | \begin{equation} | |
− | + | \mu = \mu_{0} \times min(1,e^{-k_a(z_1-k_bz_2)})) \times min(1,e^{-k_a(z_2-k_bz_1)})) | |
− | + | \end{equation} | |
− | < | + | </nowiki> |
− | + | where $\mu_0$ is given by equation 3. For each toxin the efficiency | |
− | + | parameter is a measure of ratio of toxin accumulation in cells with one | |
+ | gene copy and without anti-toxin to the $IC_{50}$. | ||
− | + | ====Program==== | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
Code de françois à ajouter | Code de françois à ajouter | ||
− | ==== | + | ====Results==== |
METTRE LES COURBE | METTRE LES COURBE | ||
+ | |||
+ | ====Bibliography==== | ||
+ | <references group="toulouse"/> | ||
=== Data recovery [https://2016.igem.org/Team:Bordeaux Bordeaux 2016] === | === Data recovery [https://2016.igem.org/Team:Bordeaux Bordeaux 2016] === | ||
Line 219: | Line 326: | ||
The iGEM team Pretoria 2016 hepled us focusing on the socio-economic and political issues facing the current platinum sector, including the Marikana strikes. | The iGEM team Pretoria 2016 hepled us focusing on the socio-economic and political issues facing the current platinum sector, including the Marikana strikes. | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− |