Line 23: | Line 23: | ||
}, | }, | ||
TeX: { | TeX: { | ||
+ | extensions: ["mhchem.js"], | ||
equationNumbers: {autoNumber: "all" } | equationNumbers: {autoNumber: "all" } | ||
} | } | ||
Line 90: | Line 91: | ||
</p> | </p> | ||
− | <div | + | <div style="float:left; width:100%"> |
<figure data-ref="5.4.1."> | <figure data-ref="5.4.1."> | ||
− | <img | + | <img |
src="https://static.igem.org/mediawiki/2016/9/98/T--Slovenia--5.4.1.png"> | src="https://static.igem.org/mediawiki/2016/9/98/T--Slovenia--5.4.1.png"> | ||
<figcaption><b> Scheme representing the CC interaction model </b><br/> The two state system | <figcaption><b> Scheme representing the CC interaction model </b><br/> The two state system | ||
Line 112: | Line 113: | ||
species at equilibrium.</p> | species at equilibrium.</p> | ||
Before cleavage | Before cleavage | ||
+ | \begin{equation} | ||
+ | \ce{Axb + B <=>[Kd_x] A-b + B <=>[Kd_B] AB-b} | ||
+ | \end{equation} | ||
\begin{align} | \begin{align} | ||
Kd_x &= \frac{[A-b]}{[Axb]} \label{1.1-2}\\ | Kd_x &= \frac{[A-b]}{[Axb]} \label{1.1-2}\\ | ||
Line 119: | Line 123: | ||
\end{align} | \end{align} | ||
After cleavage | After cleavage | ||
+ | \begin{equation} | ||
+ | \ce{Ab + B <=>[Kd_b] A + b + B <=>[Kd_B] AB + b} | ||
+ | \end{equation} | ||
\begin{align} | \begin{align} | ||
Kd_b &= \frac{[A] * [b]}{[Ab]} \label{1.3-4}\\ | Kd_b &= \frac{[A] * [b]}{[Ab]} \label{1.3-4}\\ | ||
Line 146: | Line 153: | ||
). | ). | ||
</p> | </p> | ||
− | <div | + | <div style="float:left; width:100%"> |
<figure data-ref="5.4.2."> | <figure data-ref="5.4.2."> | ||
− | <img | + | <img |
src="https://static.igem.org/mediawiki/2016/7/76/T--Slovenia--5.4.2.png"> | src="https://static.igem.org/mediawiki/2016/7/76/T--Slovenia--5.4.2.png"> | ||
<figcaption><b> Difference between [AB] and [AB-b] depending on the ratio of Kd | <figcaption><b> Difference between [AB] and [AB-b] depending on the ratio of Kd |
Revision as of 18:34, 17 October 2016
Coiled Coil interaction model
Logic operations in biological systems have been tested with several approaches
The relationship between the signal before and after cleavage by proteases is represented by the difference [AB] - [AB-b]. In order to understand the optimal combination of dissociation constant required to obtain a good signal we solved two systems of equations set up considering the two state of the reaction scheme (“Before cleavage and “After cleavage”) as separate phases of the reaction and additionally, considering cleavage as an irreversible and complete reaction.
Given values for total concentrations and Kd (from 10-9 to 10-3 M) the equations, for the reaction constants \eqref{1.1-2} - \eqref{2.1-2} and for mass conservation \eqref{1.3-4} - \eqref{2.3-5}, were solved for the species at equilibrium.
Before cleavage \begin{equation} \ce{Axb + B <=>[Kd_x] A-b + B <=>[Kd_B] AB-b} \end{equation} \begin{align} Kd_x &= \frac{[A-b]}{[Axb]} \label{1.1-2}\\ Kd_B &= \frac{[A-b] * [B]}{[AB - b]} \\ c_B &= [B] + [AB-b]\\ c_A-b &= [A-b]+[Axb]+[AB-b] \label{2.1-2} \end{align} After cleavage \begin{equation} \ce{Ab + B <=>[Kd_b] A + b + B <=>[Kd_B] AB + b} \end{equation} \begin{align} Kd_b &= \frac{[A] * [b]}{[Ab]} \label{1.3-4}\\ Kd_B &= \frac{[A] * [B]}{[AB]} \\ c_A &= [A]+[AB]+[Ab]\\ c_B &= [B] +[AB]\\ c_b &= [b] + [Ab] \label{2.3-5} \end{align} >external text The two systems are connected by the relation between the dissociation constants $Kd_b$ and $Kd_x$, \begin{equation} Kd_x = Kd_b * 4 * 10^{-3} M^{-1} \end{equation} This relation approximates the higher affinity between the coils A and b when they are covalently linked by a short peptide (as in the system “Before cleavage”)The results have been plotted varying the Kd for the interaction of A with both B and b, against the difference [AB] - [AB-b], where [AB] is considered the signal after cleavage and [AB-b] the signal before cleavage (leakage). The system revealed that in order to obtain a high difference between signal and leakage a high affinity of the coil B for the coil A (low $Kd_B$) is required, while on the other hand an excessive destabilization of the autoinhibitory coil b (high $Kd_b$) would prevent the signal to be visible ( 5.4.2. ).
This relationship suggested to try using a different version of the coiled coils available in the
toolset already used by the Slovenian iGEM 2009
team