Difference between revisions of "Team:Lubbock TTU/Test"

Line 71: Line 71:
 
</ul>
 
</ul>
 
</center>
 
</center>
</div>
 
 
<div class="withImage">
 
<h2>Project Abstract</h2>
 
<p><a href="#"></a>The condition which results in tissue death due to the poor conveyance of oxygen and other products vital for tissue cells and organs is described as tissue hypoxia or ischemia. Currently, ischemia and other related conditions such as heart attacks and strokes take the lead for being the number one cause of death worldwide. Moreover, the current treatment of ischemic attacks can intensify the damage in the tissue caused by hypoxia which is known as oxidative stress. This is due to the high oxygen concentration of the restored blood supply. Without a doubt, we need to view the bigger picture of the condition in order to solve this problem. In our project, we desire to build two different devices which work synergistically and fix these these two distinct situations, hypoxia and oxidative stress. Hence, we have decided to use "hypoxia inducible systems" and "reactive oxygen species (ROS) sensitive gene fragments". These two receptors will regulate the release of clot dissolving factors and antioxidant peptides synthesized by our engineered vessel cells. Through attaining encouraging in-vitro results, we aim to pave the way of this promising system into a lifesaving remedy.</p>
 
</div>
 
 
<div id="cont">
 
    <div class="shwnews">
 
        <ul>
 
            <li class="one">
 
                <div><a href="https://2014.igem.org/Team:ATOMS-Turkiye/Modeling" class="tit">Modeling</a><a href="https://2014.igem.org/Team:ATOMS-Turkiye/Modeling" class="lnk"><span><strong style="font-size:15px;margin-left: 0px;margin-right: 15px;">This year we carried out mathematical modeling to comprehend how our promoter system would react against hypoxia in order to treat heart related problems. In addition to this, we have also modeled our safety experiment to show its successful outcome mathematically. For more information, click here...</strong></span></a>
 
 
                    <img src="https://static.igem.org/mediawiki/2014/thumb/6/6f/ATOMS-main-modeling.png/685px-ATOMS-main-modeling.png" alt="This year, we have carried out ..." width="210" height="220"><b>This year, we have carried out ....</b>
 
 
                </div>
 
            </li>
 
            <li class="two">
 
                <div><a href="https://2014.igem.org/Team:ATOMS-Turkiye/BioBricks#main" class="tit">BioBricks</a><a href="https://2014.igem.org/Team:ATOMS-Turkiye/BioBricks#main" class="lnk"><span><strong>Our team proposes seven new eukaryotic cell parts to the Registry consisting of three promoters and four different enzymes with various capabilities. To get detailed information, proceed here.</strong></span></a>
 
 
                    <img src="https://static.igem.org/mediawiki/2014/1/16/Atoms_turkiye_main_page_diagram.jpg" alt="Our team proposes seven new eukaryotic cell parts ..." width="210" height="220"><b>Our team proposes seven new eukaryotic cell parts ...</b>
 
 
                </div>
 
            </li>
 
            <li class="thr">
 
                <div><a href="https://2014.igem.org/Team:ATOMS-Turkiye/Achievements" class="tit">Achievements</a><a href="https://2014.igem.org/Team:ATOMS-Turkiye/Achievements" class="lnk"><span><strong>It was a long study session; but it's worth. We accomplished several of our tasks to establish a fully beneficial treatment for heart attacks. To check out what we achieve, click here.</strong></span></a>
 
 
                    <img src="https://static.igem.org/mediawiki/2014/thumb/8/8a/ATOMS-main-Checklist.jpg/800px-ATOMS-main-Checklist.jpg" alt="Mechanism of ODD..." width="210" height="220"><b>It was a long study session; but...</b>
 
 
                </div>
 
            </li>
 
        </ul>
 
    </div>
 
</div>
 
 
 
</div>
 
</div>
  
Line 111: Line 76:
  
 
</html>
 
</html>
{{Team:ATOMS-Turkiye/asoFooter}}
 

Revision as of 19:39, 7 July 2016

Template:Team:Lubbock TTU/Menu