Difference between revisions of "Team:Aix-Marseille/Basic Part"

(CsgA, curlin coding sequence BBa_K1951007)
(CsgA, curlin coding sequence BBa_K1951007)
Line 34: Line 34:
 
===CsgA, curlin coding sequence  [http://parts.igem.org/Part:BBa_K1951007 BBa_K1951007]===
 
===CsgA, curlin coding sequence  [http://parts.igem.org/Part:BBa_K1951007 BBa_K1951007]===
  
[http://ecocyc.org/gene?orgid=ECOLI&id=EG11489-MONOMER CsgA] is the major and structural subunit of the curli fimbriae. Curli are coiled surface structures that assemble preferentially at growth temperatures below 37 degrees Celsius. Curli are the major proteinaceous component of a complex extracellular matrix produced by many ''Enterobacteriaceae''. They were first discovered in the late 1980s on ''Escherichia coli'' strains that caused bovine mastitis, and have since been implicated in many physiological and pathogenic processes of ''E. coli'' and ''Salmonella'' spp. Curli fibers are involved in adhesion to surfaces, cell aggregation, and biofilm formation. They also mediate host cell adhesion and invasion, and they are potent inducers of the host inflammatory response. It has been shown that amyloid proteins, like curli, can bind some metals <ref name="metal_adhesion">[http://www.nature.com/nnano/journal/v11/n4/full/nnano.2015.310.html Sreenath Bolisetty and Raffaele Mezzenga 2016, Nature Nanotechnology</ref> and thats why we wanted to use it in our project.
+
[http://ecocyc.org/gene?orgid=ECOLI&id=EG11489-MONOMER CsgA] is the major and structural subunit of the curli fimbriae. Curli are coiled surface structures that assemble preferentially at growth temperatures below 37 degrees Celsius. Curli are the major proteinaceous component of a complex extracellular matrix produced by many ''Enterobacteriaceae''. They were first discovered in the late 1980s on ''Escherichia coli'' strains that caused bovine mastitis, and have since been implicated in many physiological and pathogenic processes of ''E. coli'' and ''Salmonella'' spp. Curli fibers are involved in adhesion to surfaces, cell aggregation, and biofilm formation. They also mediate host cell adhesion and invasion, and they are potent inducers of the host inflammatory response. It has been shown that amyloid proteins, like curli, can bind some metals <ref name="metal_adhesion">[http://www.nature.com/nnano/journal/v11/n4/full/nnano.2015.310.html Sreenath Bolisetty and Raffaele Mezzenga 2016, Nature Nanotechnology]</ref> and thats why we wanted to use it in our project.
  
 
<references/>
 
<references/>
  
 
{{:Team:Aix-Marseille/Template-Footer}}
 
{{:Team:Aix-Marseille/Template-Footer}}

Revision as of 18:18, 19 October 2016