Difference between revisions of "Team:Paris Bettencourt/Notebook/Bibliography"

Line 109: Line 109:
 
<li> Dubé, E., Shareck, F., Hurtubise, Y. et al. Appl Microbiol Biotechnol (2008) 79: 597. Homologous cloning, expression and characterization of a laccase from <i> Streptomyces coelicolor </i> and enzymatic decolourisation of an indigo dye. </li>
 
<li> Dubé, E., Shareck, F., Hurtubise, Y. et al. Appl Microbiol Biotechnol (2008) 79: 597. Homologous cloning, expression and characterization of a laccase from <i> Streptomyces coelicolor </i> and enzymatic decolourisation of an indigo dye. </li>
 
<li> J Margot, C Bennati-Granier, J Maillard, P Blánquez, D.A Barry, C Holliger (2013). Bacterial <i>versus</i> fungal laccase : potential for micropollutant degradation. ABM Express ; 3 :63.</li>
 
<li> J Margot, C Bennati-Granier, J Maillard, P Blánquez, D.A Barry, C Holliger (2013). Bacterial <i>versus</i> fungal laccase : potential for micropollutant degradation. ABM Express ; 3 :63.</li>
<li> Woodhead Publishing Series in Textile: Number 164; Denim, Manufacture, Finishing and Applications; edited by R. Paul </li>
+
<li> Woodhead Publishing Series in Textile: Number 164; Denim, Manufacture, Finishing and Applications; edited by R. Paul
 +
<li>Barbagallo, R.N., Palmeri, R. Fabiano, S.; Rapisarda, P.; ,Spagna, G (2007). Characteristic of beta-glucosidase from Sicilian blood oranges in relation to anthocyanin degradation.Enzymatic Microbial Technology. 41, 570-575
 +
<li>Cerdan P, Rekik M and Harayama S (1995). Substrate specificity differences between two catechol 2,3-dioxygenases encoded by the TOL and NAH plasmids from <i>Pseudomonas putida</i>. European Journal of Biochemistry. 229, 113-118
 +
<li>Curiel JA, Rodriguez H, Acebron I, Mancheño JM, de las Rivas B and Muñoz R (2009). Production and physicochemical properties of recombinant <i>Lactobacillus plantarum</i> tannase. Journal of Agricultural Food Chemistry. 57(14), 6224-6230
 +
<li>Jaiswal V, DerManderosian A, and Porter JR. (2009). Anthocyanins and polyphenol oxidase from dried arils of pomegranate (<i>Punica granatum</i> L.). Food chemistry. 118(1), 11-16
 +
<li>Kobayashi T, Ishida T, Horiike K, Takara Y, Numao N, Nakazawa A, Nakazawa T and Nozaki M (1995). Overexpression of <i>Pseudomonas putida</i> Catechol 2,3-Dioxygenase with High Specific Activity by Genetically Engineered <i>Escherichia coli</i>. Journal of Biochemistry. 117, 614-622
 +
<li>Lin J and Milase RN (2015) Purification and characterization of catechol 1,2-dioxygenase from <i>Acinetobacter</i> sp. Y64 Strain and <i>Escherichia coli</i> transformants. Protein Journal. 34(6), 421-433
 +
<li>Rodriguez Couto S, Toca Herrera JL, (2006). Industrial and biotechnological applications of laccases: a review. Biotechnology Advances. 24/5), 500-513
 +
<li>Wu YL, Pan LP, Yu SL and Li HH (2010). Cloning, microbial expression and structure-activity relationship of polyphenol oxidases from <i>Camellia sinensis</i>. Journal of Biotechnology. 145(1), 66-72
 +
</li>
 +
</ul>
 
</ul>
 
</ul>
  

Revision as of 23:27, 19 October 2016


  • Kanekar, P. P., Sarnaik, S. S., & Kelkar, A. S. (1998). Bioremediation of phenol by alkaliphilic bacteria isolated from alkaline lake of Lonar, India. Journal of applied microbiology, 85(S1).
  • Dantas, G., Sommer, M. O., Oluwasegun, R. D., & Church, G. M. (2008). Bacteria subsisting on antibiotics. Science, 320(5872), 100-103.
  • Curry, J. C., & Borovian, G. E. (1976). Selective medium for distinguishing micrococci from staphylococci in the clinical laboratory. Journal of clinical microbiology, 4(5), 455.
  • Kocur, M., Kloos, W. E., & SCHLEIFER, K. H. (2006). The genus Micrococcus. In The Prokaryotes (pp. 961-971). Springer New York.
  • Koch, C., Schumann, P., & Stackebrandt, E. (1995). Reclassification of Micrococcus agilis (Ali-Cohen 1889) to the genus Arthrobacter as Arthrobacter agilis comb. nov. and emendation of the genus Arthrobacter. International Journal of Systematic and Evolutionary Microbiology, 45(4), 837-839.
  • Mossel, D. A. A., Koopman, M. J., & Jongerius, E. (1967). Enumeration of Bacillus cereus in foods. Applied microbiology, 15(3), 650-653.
  • Pillai, B. V., & Swarup, S. (2002). Elucidation of the flavonoid catabolism pathway in Pseudomonas putida PML2 by comparative metabolic profiling. Applied and environmental microbiology, 68(1), 143-151.
  • Herrmann, H., Janke, D., Krejsa, S., & Kunze, I. (1987). Involvement of the plasmid pPGH1 in the phenol degradation of Pseudomonas putida strain H. FEMS microbiology letters, 43(2), 133-137.
  • Cheynier, V., Dueñas-Paton, M., Salas, E., Maury, C., Souquet, J. M., Sarni-Manchado, P., & Fulcrand, H. (2006). Structure and properties of wine pigments and tannins. American Journal of Enology and Viticulture, 57(3), 298-305.
  • Lee, J., Durst, R. W., & Wrolstad, R. E. (2005). Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: collaborative study. Journal of AOAC international, 88(5), 1269-1278.
  • Hua, Z., Yuesheng, D., Ge, X., Menglu, L., Liya, D., LiJia, A., & Zhilong, X. (2013). Extraction and purification of anthocyanins from the fruit residues of Vaccinium uliginosum Linn. Journal of Chromatography & Separation Techniques, 2013.
  • Dimitrovska, M., Bocevska, M., Dimitrovski, D., & Murkovic, M. (2011). Anthocyanin composition of Vranec, Cabernet Sauvignon, Merlot and Pinot Noir grapes as indicator of their varietal differentiation. European Food Research and Technology, 232(4), 591-600.
  • Saucier, C. (2010). How do wine polyphenols evolve during wine ageing?. Cerevisia, 35(1), 11-15.
  • Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical chemistry, 31(3), 426-428.
  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1-2), 248-254.
  • Welch, C. R., Wu, Q., & Simon, J. E. (2008). Recent advances in anthocyanin analysis and characterization. Current analytical chemistry, 4(2), 75-101.
  • Wrolstad, R. E. (1993). Color and pigment analyses in fruit products. Corvallis, Or.: Agricultural Experiment Station. Oregon State University..
  • Lopes, P., Richard, T., Saucier, C., Teissedre, P. L., Monti, J. P., & Glories, Y. (2007). Anthocyanone A: A quinone methide derivative resulting from malvidin 3-O-glucoside degradation. Journal of agricultural and food chemistry, 55(7), 2698-2704.
  • Walle, T. (2004). Absorption and metabolism of flavonoids. Free Radical Biology and Medicine, 36(7), 829-837.
  • Griffiths, L. A., & Barrow, A. (1972). Metabolism of flavonoid compounds in germ-free rats. Biochemical Journal, 130(4), 1161.
  • Gall, M., Thomsen, M., Peters, C., Pavlidis, I. V., Jonczyk, P., Grünert, P. P., ... & Geißler, T. (2014). Enzymatic conversion of flavonoids using bacterial chalcone isomerase and enoate reductase. Angewandte Chemie International Edition, 53(5), 1439-1442.
  • Simons, A. L. (2005). Structure-degradation relationships of flavonoids and their correlation to human bioavailability.
  • R Campos, A Kandelbauer, K.H Robra, Artur Cavaco-Paulo, G.M Gübitz (2001). Indigo degradation with urified laccases from Trametes hirsute and Sclerotium rolfsii . Journal of Biotechnology; 131-139
  • Dubé, E., Shareck, F., Hurtubise, Y. et al. Appl Microbiol Biotechnol (2008) 79: 597. Homologous cloning, expression and characterization of a laccase from Streptomyces coelicolor and enzymatic decolourisation of an indigo dye.
  • J Margot, C Bennati-Granier, J Maillard, P Blánquez, D.A Barry, C Holliger (2013). Bacterial versus fungal laccase : potential for micropollutant degradation. ABM Express ; 3 :63.
  • Woodhead Publishing Series in Textile: Number 164; Denim, Manufacture, Finishing and Applications; edited by R. Paul
  • Barbagallo, R.N., Palmeri, R. Fabiano, S.; Rapisarda, P.; ,Spagna, G (2007). Characteristic of beta-glucosidase from Sicilian blood oranges in relation to anthocyanin degradation.Enzymatic Microbial Technology. 41, 570-575
  • Cerdan P, Rekik M and Harayama S (1995). Substrate specificity differences between two catechol 2,3-dioxygenases encoded by the TOL and NAH plasmids from Pseudomonas putida. European Journal of Biochemistry. 229, 113-118
  • Curiel JA, Rodriguez H, Acebron I, Mancheño JM, de las Rivas B and Muñoz R (2009). Production and physicochemical properties of recombinant Lactobacillus plantarum tannase. Journal of Agricultural Food Chemistry. 57(14), 6224-6230
  • Jaiswal V, DerManderosian A, and Porter JR. (2009). Anthocyanins and polyphenol oxidase from dried arils of pomegranate (Punica granatum L.). Food chemistry. 118(1), 11-16
  • Kobayashi T, Ishida T, Horiike K, Takara Y, Numao N, Nakazawa A, Nakazawa T and Nozaki M (1995). Overexpression of Pseudomonas putida Catechol 2,3-Dioxygenase with High Specific Activity by Genetically Engineered Escherichia coli. Journal of Biochemistry. 117, 614-622
  • Lin J and Milase RN (2015) Purification and characterization of catechol 1,2-dioxygenase from Acinetobacter sp. Y64 Strain and Escherichia coli transformants. Protein Journal. 34(6), 421-433
  • Rodriguez Couto S, Toca Herrera JL, (2006). Industrial and biotechnological applications of laccases: a review. Biotechnology Advances. 24/5), 500-513
  • Wu YL, Pan LP, Yu SL and Li HH (2010). Cloning, microbial expression and structure-activity relationship of polyphenol oxidases from Camellia sinensis. Journal of Biotechnology. 145(1), 66-72


Centre for Research and Interdisciplinarity (CRI)
Faculty of Medicine Cochin Port-Royal, South wing, 2nd floor
Paris Descartes University
24, rue du Faubourg Saint Jacques
75014 Paris, France
+33 1 44 41 25 22/25
igem2016parisbettencourt@gmail.com
2016.igem.org