Difference between revisions of "Team:Pasteur Paris/Scenarios"

Line 117: Line 117:
 
<div class="text1">
 
<div class="text1">
 
<p>
 
<p>
With the assistance of <B>synthetic biology</B>, we successfully modified <i>E. coli</i>, within a <B>contained</B> fully functioning biosafety laboratory. With it, we produce the protein needed to create biosilica, and bind antibodies onto a cellulose support. We selected <B>biosilica<B> to increase <B>rigidity</B> of our patch and because it is completely <B>biodegradable</B>. The innovative design of the patch creates a multilayered matrix coated with antibodies capable of <B>detecting</B> a wide panel of vector-borne pathogens and insecticide resistant proteins from captured mosquitoes. This patch is <B>customizable</B> and can be easily adapted to simultaneously test for multiple vector-borne pathogens prevalent in specific locations. Additionally, the patch will have <B>2D barcoded</B> readouts, generating an environmental <B>surveillance database</B>. A precise map of vector hot spots will provide a better assessment and response to vector-borne diseases, assisting <B>local health authorities</B> with <B>anticipating</B> and <B>preparing</B> for an epidemic. </br></br>
+
With the assistance of <B>synthetic biology</B>, we successfully modified <i>E. coli</i>, within a <B>contained</B> fully functioning biosafety laboratory. With it, we produce the protein needed to create biosilica, and bind antibodies onto a cellulose support. We selected <B>biosilica</B> to increase <B>rigidity</B> of our patch and because it is completely <B>biodegradable</B>. The innovative design of the patch creates a multilayered matrix coated with antibodies capable of <B>detecting</B> a wide panel of vector-borne pathogens and insecticide resistant proteins from captured mosquitoes. This patch is <B>customizable</B> and can be easily adapted to simultaneously test for multiple vector-borne pathogens prevalent in specific locations. Additionally, the patch will have <B>2D barcoded</B> readouts, generating an environmental <B>surveillance database</B>. A precise map of vector hot spots will provide a better assessment and response to vector-borne diseases, assisting <B>local health authorities</B> with <B>anticipating</B> and <B>preparing</B> for an epidemic. </br></br>
  
 
The development of our project’s concept and the design of our device (i.e. patch and trap) was an iteractive process that involved a multidimensional collaboration of people and ideas. We successfully achieved this through:</br>
 
The development of our project’s concept and the design of our device (i.e. patch and trap) was an iteractive process that involved a multidimensional collaboration of people and ideas. We successfully achieved this through:</br>

Revision as of 02:38, 20 October 2016