Difference between revisions of "Team:UNebraska-Lincoln"

Line 205: Line 205:
 
   <div class="col-lg-6.col-centered" style="font-family:aleoregular;">
 
   <div class="col-lg-6.col-centered" style="font-family:aleoregular;">
 
<h3 id="header">A Brief Description:</h3>
 
<h3 id="header">A Brief Description:</h3>
   <p>Deep within the porcupine gut lies a concoction of microorganisms (called a microbiome) and their accompanying enzymes. We believe this fascinating microbiome holds the secret as to why porcupines are capable of digesting tree bark and sap, where as other mammals such as ourselves, are incapable of doing so. The Dalhousie iGEM team is working in close partnership with Schubenacadie Wildlife Park which has provided mammal fecal samples that we can use for microbiome analysis. As much as we are interested in learning about porcupines, we are also interested in learning about the other mammals living at the park. This will allow us to broaden our range, and find more microorganisms of interest. Once the organisms are identified, we can use online search tools like Blast to find enzymes and biosynthetic pathways within the microbiome organisms that are capable of utilizing cellulose or tree sap for the creation of bioplastics, biofuel and many other useful products. The project has developed into three mini-projects that we hope will illuminate not only the porcupine microbiome but also the bacterial population found within the Schubenacadie ecosystem.</p>
+
   <p>Nitrogen is a highly abundant element in the Earth’s atmosphere. Nitrogen is also essential for life. However, atmospheric nitrogen (N2) is not useful in living processes. Reactive nitrogen such as Ammonia or Nitrate are reactive forms of nitrogen used by plants and animals. To maximize crop yield, many farmers add nitrogen based fertilizer to their crops. Oftentimes excess nitrogen in the soil is washed away by rain into other natural water systems. This nitrogen runoff can and does have devastating effects on the biodiversity in waterways. Excess nitrogen in waterways can cause eutrophication, where algae takes advantage of the excess nitrogen and feed on it causing much larger algal blooms. The algal blooms eventually lead to a dramatic reduction of dissolved oxygen in the water, which causes a dead zone where little to no aquatic animals and plants are able to survive. An example of a dead zone largely caused by excess reactive nitrogen is the dead zone in the Gulf of Mexico which measures approximately 5,500-6,500 square miles (Gulf of Mexico Dead Zone).</p>
 +
<p>The Haber-Bosch process is used to produce reactive nitrogen, specifically for fertilizers. This process produces approximately 100Tg of reactive nitrogen per year (Chen, Ling-Hsiang). It is clear we can effectively produce reactive nitrogen, however, we need to clean up after ourselves by finishing the the nitrogen cycle. There is a lot more reactive nitrogen being introduced to the environment, but the rate of denitrification has essentially stayed the same. Our team will focus on denitrification, in an effort to restore safer nitrogen levels in waterways and bodies of water and ultimately to help make the completion of the nitrogen cycle more efficient.
  
<p>The first project involves sequencing the porcupine microbiome. A preliminary test was conducted utilizing porcupine fecal samples collected on our first expedition to the park. The samples were prepared via a PowerFecal kit (Mo Bio) and then sent for 16s sequencing at the Integrated Microbiome Resource at Dalhousie University. We are still waiting for our results. On the second expedition to the park, we were provided with twenty fecal samples from mammals such as porcupines, black bears, beavers, deers, otters, and rabbits. These samples have recently been prepared for 16s sequencing using a PowerFecal kit. We hope that once we sequence the microbiome of these twenty mammals that we can produce a microbiome map for the park.</p>
+
How we plan to achieve denitrification:
  
<p>The second project involves plating the fecal samples on various media and identifying what grows. To begin, cellulose media was prepared as we believe the media to be very selective. Furthermore, identifying bacteria capable of surviving in a cellulose environment will have down steam implications as future teams can study the cellulose degradation properties of these bacteria and their potential biofuel capabilities. Two rounds of plating occurred using porcupine feces from the first trip to the park and from the second. It appears that there is limited growth on the cellulose plates (in comparison to regular LB agar plates) but two colonies have emerged. As the team is interested in identifying the bacteria that allow for digestion of tree bark and sap, sap containing plates were prepared.  Any bacteria that grow on the cellulose plates will then be transferred to the sap plates to see if they can survive in these even harsher conditions. We have yet to transfer any bacteria to the sap plates as the first round of cellulose plating was considered preliminary to ensure the selectivity of the media. </p>
+
Denitrification Process: NO3 → NO2 → NO → N2O → N2
 +
</p>
  
<p>The third project involves the formation of a genomic DNA library of the environmental DNA collected from the porcupine sample. This stage of the project is very much in its infancy as the team is still working on preparing the vector and the environmental DNA. </p>
 
 
<p>Dalhousie iGEM hope that these experiments will not only provide immediate insight into the Schubenacadie ecosystem, and porcupine microbiome but will also lay the foundation for exploring biofuel production and cellulose degradation by characterized as well did novel porcupine bacteria.</p>
 
 
   </div>
 
   </div>
 
   </div>
 
   </div>

Revision as of 17:09, 16 September 2016

<!DOCTYPE html>