Difference between revisions of "ASIJProjectDescription"

Line 8,021: Line 8,021:
  
 
We chose to optimize PETase as our goal to make a new type of biobrick available to future iGEM teams. We hope that this will make experiments in the following years easier to conduct. However, in order to even get to that stage, we recognized that we needed a well thought out procedure. Our team is currently working on this step. Thus far we have determined we will be using a western blot test to help us deal with the signal peptides. Currently we also have three promoters (one on the slightly weaker side and two on the stronger side) taken from the list of Anderson promoters to test in order to determine how to make PETase most efficient. Before testing such promoters though, we need to isolate  evaluate each promoters' effectiveness and efficiency. This information is essential before we proceed onto our next steps and think about real world applications. Questions we may ask ourselves following this first step include: “How long will the degradation take?” and “Will the byproducts of the degradation be harmful in any way to the environment or to people?” Our aim, as stated above, is to find a faster, more efficient process to degrade plastic. Answers to such questions will be essential in seeking solutions to global environmental problems. In regards to the first question, to our current knowledge, 450 years is the timeframe for the natural biodegradation of PET. From our perspective this is much too inefficient when you consider how much PET we use daily. As a result, our experiment will focus on increasing the efficiency of the degradation of plastic through the manipulation of PETase. These are just some examples of the types of questions that we must first consider. Once our confidence in our research progresses, we can then fully focus on individual procedural steps of our project such as the Western Blot.</p>
 
We chose to optimize PETase as our goal to make a new type of biobrick available to future iGEM teams. We hope that this will make experiments in the following years easier to conduct. However, in order to even get to that stage, we recognized that we needed a well thought out procedure. Our team is currently working on this step. Thus far we have determined we will be using a western blot test to help us deal with the signal peptides. Currently we also have three promoters (one on the slightly weaker side and two on the stronger side) taken from the list of Anderson promoters to test in order to determine how to make PETase most efficient. Before testing such promoters though, we need to isolate  evaluate each promoters' effectiveness and efficiency. This information is essential before we proceed onto our next steps and think about real world applications. Questions we may ask ourselves following this first step include: “How long will the degradation take?” and “Will the byproducts of the degradation be harmful in any way to the environment or to people?” Our aim, as stated above, is to find a faster, more efficient process to degrade plastic. Answers to such questions will be essential in seeking solutions to global environmental problems. In regards to the first question, to our current knowledge, 450 years is the timeframe for the natural biodegradation of PET. From our perspective this is much too inefficient when you consider how much PET we use daily. As a result, our experiment will focus on increasing the efficiency of the degradation of plastic through the manipulation of PETase. These are just some examples of the types of questions that we must first consider. Once our confidence in our research progresses, we can then fully focus on individual procedural steps of our project such as the Western Blot.</p>
 
 
<br>
 
 
<h4>
 
<h4>
 +
<h1 >Abstract </h1>
 +
<h4>
 +
In recent years, the production of polyethylene terephthalate (PET) has increased rapidly, as a result of low production costs and consumer demands.  PET is one of the most common plastic polymers, comprised of repeating monomeric subunits of Terephthalic Acid and Ethylene Glycol. It is frequently used in the manufacture of plastic bottles and clothing fibres, especially in Japan. As avid users of PET-based products, our team decided to research how to optimise the degradation of PET, which takes an average of 450 years to degrade naturally. We were further inspired to pursue this goal with Keio University’s recent discovery of Ideonella sakaiensis — a unique bacteria capable of PET degradation. Thus, we have focused our project on the synthesis of an optimal PETase biobrick, which would be included in the iGEM database. Ultimately, our goal is to find an ideal promoter to expedite the production and secretion of PETase.
 +
</h4>
 
<h2>References</h2>
 
<h2>References</h2>
 
<h4>
 
<h4>

Revision as of 02:34, 1 October 2016

The BIG TEMPLATE : RESPONSIVE and FREE