(Created page with "{{NYMU-sheet}} {{NYMU-Taipei}} <html> <head> <link href='https://fonts.googleapis.com/css?family=Product+Sans' rel='stylesheet' type='text/css'> <link href="http://2016.ig...") |
|||
Line 36: | Line 36: | ||
</div> | </div> | ||
− | + | ||
<div class="fund"> | <div class="fund"> | ||
− | <h1> | + | <h1>Epidemic</h1><hr><br> |
− | <p style="font-size:16px;"> | + | <p style="font-size:16px;"> |
+ | B. dorsalis is a major cause of annual agricultural losses due to oviposition in fruits. Here we introduce our prototype trap and M. anisopliae, our genetically engineered fungi, to address this issue. <br> | ||
+ | Our model aims to demonstrate that combining our prototype with the fungi can reduce B. dorsalis’ population. We selected the SEIR model, which fits the ideal assumption in epidemiology, and revised the model to make it more practical for our purpose.<br> | ||
+ | </p> | ||
+ | <div align="center"> | ||
+ | <table border="1" cellpadding="0" cellspacing="0" align="center"> | ||
+ | <tbody> | ||
+ | <tr> | ||
+ | <td style="width:92px;"> | ||
+ | <p> | ||
+ | Symbol</p> | ||
+ | </td> | ||
+ | <td style="width:478px;"> | ||
+ | <p> | ||
+ | Description</p> | ||
+ | </td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td style="width:92px;"> | ||
+ | <p> | ||
+ | Susceptible</p> | ||
+ | </td> | ||
+ | <td style="width:478px;"> | ||
+ | <p> | ||
+ | <em>B. dorsalis</em> is slightly or moderately resistant to <em>M. anisopliae</em></p> | ||
+ | </td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td style="width:92px;"> | ||
+ | <p> | ||
+ | Exposed</p> | ||
+ | </td> | ||
+ | <td style="width:478px;"> | ||
+ | <p> | ||
+ | <em>B. dorsalis</em> is exposed to a low amount of <em>M. anisopliae</em> in our trap; disease will be spread further during mating.</p> | ||
+ | </td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td style="width:92px;"> | ||
+ | <p> | ||
+ | Infected</p> | ||
+ | </td> | ||
+ | <td style="width:478px;"> | ||
+ | <p> | ||
+ | <em>M. anisopliae </em>enters <em>B. dorsalis</em>’ hemolymph and initiates cell division.</p> | ||
+ | </td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td style="width:92px;"> | ||
+ | <p> | ||
+ | Death</p> | ||
+ | </td> | ||
+ | <td style="width:478px;"> | ||
+ | <p> | ||
+ | <em>B. dorsalis </em>dies from the infection of <em>M. anisopliae</em>.</p> | ||
+ | </td> | ||
+ | </tr> | ||
+ | </tbody> | ||
+ | </table> | ||
+ | </div> | ||
+ | <p style="font-size:16px;"> | ||
+ | Based on our assumptions, we developed a set of differential equations that characterizes the nature of epidemic in our model:<br> | ||
+ | dms/dt=daily_move_in-trap-death_rate*ms<br> | ||
+ | dfs/dt=daily_move_in-death_rate*fs<br> | ||
+ | </p> | ||
<br/> | <br/> | ||
− | |||
− | <br/> | + | <h1>Parameter</h1><hr /><br /> |
− | <p style="font-size:16px;" | + | <p style="font-size:16px;"> |
− | |||
− | + | <p align="center"> | |
+ | <strong>Parameter</strong></p> | ||
+ | <div align="center"> | ||
+ | <table border="1" cellpadding="0" cellspacing="0" align="center"> | ||
+ | <tbody> | ||
+ | <tr> | ||
+ | <td style="width:73px;"> | ||
+ | <p> | ||
+ | Type</p> | ||
+ | </td> | ||
+ | <td style="width:109px;"> | ||
+ | <p> | ||
+ | Name</p> | ||
+ | </td> | ||
+ | <td style="width:220px;"> | ||
+ | <p> | ||
+ | Meaning (Value)</p> | ||
+ | </td> | ||
+ | <td style="width:179px;"> | ||
+ | <p> | ||
+ | Reference</p> | ||
+ | </td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td rowspan="5" style="width:73px;"> | ||
+ | <p> | ||
+ | Constant</p> | ||
+ | </td> | ||
+ | <td style="width:109px;"> | ||
+ | <p> | ||
+ | Mating rate</p> | ||
+ | </td> | ||
+ | <td style="width:220px;"> | ||
+ | <p> | ||
+ | 0.8635</p> | ||
+ | </td> | ||
+ | <td style="width:179px;"> | ||
+ | <p> | ||
+ | </p> | ||
+ | </td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td style="width:109px;"> | ||
+ | <p> | ||
+ | daily_capture</p> | ||
+ | </td> | ||
+ | <td style="width:220px;"> | ||
+ | <p> | ||
+ | 40</p> | ||
+ | </td> | ||
+ | <td style="width:179px;"> | ||
+ | <p> | ||
+ | </p> | ||
+ | </td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td style="width:109px;"> | ||
+ | <p> | ||
+ | daily_move_in</p> | ||
+ | </td> | ||
+ | <td style="width:220px;"> | ||
+ | <p> | ||
+ | 0</p> | ||
+ | </td> | ||
+ | <td style="width:179px;"> | ||
+ | <p> | ||
+ | </p> | ||
+ | </td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td style="width:109px;"> | ||
+ | <p> | ||
+ | K</p> | ||
+ | </td> | ||
+ | <td style="width:220px;"> | ||
+ | <p> | ||
+ | adult death rate (0.05)</p> | ||
+ | </td> | ||
+ | <td style="width:179px;"> | ||
+ | <p> | ||
+ | [1]</p> | ||
+ | </td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td style="width:109px;"> | ||
+ | <p> | ||
+ | k0</p> | ||
+ | </td> | ||
+ | <td style="width:220px;"> | ||
+ | <p> | ||
+ | larval death rate (0.23)</p> | ||
+ | </td> | ||
+ | <td style="width:179px;"> | ||
+ | <p> | ||
+ | [2]</p> | ||
+ | </td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td rowspan="7" style="width:73px;"> | ||
+ | <p> | ||
+ | Variable</p> | ||
+ | </td> | ||
+ | <td style="width:109px;"> | ||
+ | <p> | ||
+ | ms</p> | ||
+ | </td> | ||
+ | <td style="width:220px;"> | ||
+ | <p> | ||
+ | susceptible male</p> | ||
+ | </td> | ||
+ | <td rowspan="7" style="width:179px;"> | ||
+ | <p> | ||
+ | </p> | ||
+ | </td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td style="width:109px;"> | ||
+ | <p> | ||
+ | Fs</p> | ||
+ | </td> | ||
+ | <td style="width:220px;"> | ||
+ | <p> | ||
+ | susceptible female</p> | ||
+ | </td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td style="width:109px;"> | ||
+ | <p> | ||
+ | me</p> | ||
+ | </td> | ||
+ | <td style="width:220px;"> | ||
+ | <p> | ||
+ | exposed male</p> | ||
+ | </td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td style="width:109px;"> | ||
+ | <p> | ||
+ | Fe</p> | ||
+ | </td> | ||
+ | <td style="width:220px;"> | ||
+ | <p> | ||
+ | exposed female</p> | ||
+ | </td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td style="width:109px;"> | ||
+ | <p> | ||
+ | mi</p> | ||
+ | </td> | ||
+ | <td style="width:220px;"> | ||
+ | <p> | ||
+ | infected male</p> | ||
+ | </td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td style="width:109px;"> | ||
+ | <p> | ||
+ | Fi</p> | ||
+ | </td> | ||
+ | <td style="width:220px;"> | ||
+ | <p> | ||
+ | infected female</p> | ||
+ | </td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td style="width:109px;"> | ||
+ | <p> | ||
+ | D</p> | ||
+ | </td> | ||
+ | <td style="width:220px;"> | ||
+ | <p> | ||
+ | Death</p> | ||
+ | </td> | ||
+ | </tr> | ||
+ | </tbody> | ||
+ | </table> | ||
+ | </div> | ||
− | + | <br> | |
− | |||
− | <br/> | + | <h1>Result</h1><hr /><br /> |
+ | <div class="imageimage1"> | ||
+ | <img src="https://static.igem.org/mediawiki/2016/2/21/T--NYMU-Taipei--model_result.png" height=100% width=100%> | ||
+ | </div> | ||
− | + | <p style="font-size:16px;"> | |
− | + | The graph above shows an initial growth in population due to the attraction of B. dorsalis from the environment. However, the population subsequently drops when infected by M. anisopliae. The results indicate that the use of prototype combined with the fungi yields a 70% decrease in the B. dorsalis population. Thus, we can put our product into practice a few weeks prior to the harvest to minimize crop damage. | |
− | + | </p> | |
− | + | ||
<br/> | <br/> | ||
− | + | <h1>Reference</h1><hr /><br /> | |
− | <br/> | + | <p style="font-size:16px;"> |
+ | |||
+ | 1.Life History and Demographic Parameters of Three Laboratory-reared Tephritids (Diptera: Tephritidae)<br> | ||
+ | 2.Effect of temperature on the development and survival of immature stages of the carambola fruit fly, Bactrocera carambolae, and the Asian papaya fruit fly, Bactrocera papayae, reared on guava diet | ||
+ | </p> | ||
+ | |||
+ | |||
− | |||
</div> | </div> |
Revision as of 14:04, 10 October 2016
TITLE
Besides the fungal killing switch and the functional prototype that help reduce concerns over GMO
Epidemic
B. dorsalis is a major cause of annual agricultural losses due to oviposition in fruits. Here we introduce our prototype trap and M. anisopliae, our genetically engineered fungi, to address this issue.
Our model aims to demonstrate that combining our prototype with the fungi can reduce B. dorsalis’ population. We selected the SEIR model, which fits the ideal assumption in epidemiology, and revised the model to make it more practical for our purpose.
Symbol |
Description |
Susceptible |
B. dorsalis is slightly or moderately resistant to M. anisopliae |
Exposed |
B. dorsalis is exposed to a low amount of M. anisopliae in our trap; disease will be spread further during mating. |
Infected |
M. anisopliae enters B. dorsalis’ hemolymph and initiates cell division. |
Death |
B. dorsalis dies from the infection of M. anisopliae. |
Based on our assumptions, we developed a set of differential equations that characterizes the nature of epidemic in our model:
dms/dt=daily_move_in-trap-death_rate*ms
dfs/dt=daily_move_in-death_rate*fs
Parameter
Parameter
Type |
Name |
Meaning (Value) |
Reference |
Constant |
Mating rate |
0.8635 |
|
daily_capture |
40 |
|
|
daily_move_in |
0 |
|
|
K |
adult death rate (0.05) |
[1] |
|
k0 |
larval death rate (0.23) |
[2] |
|
Variable |
ms |
susceptible male |
|
Fs |
susceptible female |
||
me |
exposed male |
||
Fe |
exposed female |
||
mi |
infected male |
||
Fi |
infected female |
||
D |
Death |
Result
The graph above shows an initial growth in population due to the attraction of B. dorsalis from the environment. However, the population subsequently drops when infected by M. anisopliae. The results indicate that the use of prototype combined with the fungi yields a 70% decrease in the B. dorsalis population. Thus, we can put our product into practice a few weeks prior to the harvest to minimize crop damage.
Reference
1.Life History and Demographic Parameters of Three Laboratory-reared Tephritids (Diptera: Tephritidae)
2.Effect of temperature on the development and survival of immature stages of the carambola fruit fly, Bactrocera carambolae, and the Asian papaya fruit fly, Bactrocera papayae, reared on guava diet