Difference between revisions of "Team:Tokyo Tech"

Line 1: Line 1:
{{Tokyo_Tech}}
+
{{Tokyo Tech}}
<!--  before change
+
<html>
{{Team:Tokyo Tech/template2016}}
+
-->
+
<html lang="en" dir="ltr" class="client-nojs">
+
 
<head>
 
<head>
<meta charset="UTF-8" />
+
<meta charset="UTF-8" />
<title>Team:Tokyo_Tech - 2016.igem.org</title>
+
<style type="text/css">
<meta name="generator" content="MediaWiki 1.24.1" />
+
<link rel="shortcut icon" href="/favicon.ico" />
+
<link rel="search" type="application/opensearchdescription+xml" href="/wiki/opensearch_desc.php" title="2016.igem.org (en)" />
+
<link rel="EditURI" type="application/rsd+xml" href="https://2016.igem.org/wiki/api.php?action=rsd" />
+
<link rel="alternate" hreflang="x-default" href="/Team:Tokyo_Tech" />
+
<link rel="copyright" href="http://creativecommons.org/licenses/by/3.0/" />
+
<link rel="alternate" type="application/atom+xml" title="2016.igem.org Atom feed" href="/wiki/index.php?title=Special:RecentChanges&amp;feed=atom" />
+
<link rel="stylesheet" href="https://2016.igem.org/wiki/load.php?debug=false&amp;lang=en&amp;modules=mediawiki.legacy.commonPrint%2Cshared%7Cmediawiki.skinning.content.externallinks%7Cmediawiki.skinning.interface%7Cmediawiki.ui.button%7Cskins.igem.styles&amp;only=styles&amp;skin=igem&amp;*" />
+
<!--[if IE 6]><link rel="stylesheet" href="/wiki/skins/Igem/IE60Fixes.css?303" media="screen" /><![endif]-->
+
<!--[if IE 7]><link rel="stylesheet" href="/wiki/skins/Igem/IE70Fixes.css?303" media="screen" /><![endif]--><meta name="ResourceLoaderDynamicStyles" content="" />
+
<style>a:lang(ar),a:lang(kk-arab),a:lang(mzn),a:lang(ps),a:lang(ur){text-decoration:none}
+
/* cache key: 2016_igem_org:resourceloader:filter:minify-css:7:59593960c20e34faccc09e56269cf4e1 */</style>
+
<script src="https://2016.igem.org/wiki/load.php?debug=false&amp;lang=en&amp;modules=startup&amp;only=scripts&amp;skin=igem&amp;*"></script>
+
<script>if(window.mw){
+
mw.config.set({"wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Team:Tokyo_Tech","wgTitle":"Team:Tokyo_Tech","wgCurRevisionId":21437,"wgRevisionId":21437,"wgArticleId":1013,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":"Hajime Fujita","wgUserGroups":["*","user","autoconfirmed"],"wgCategories":[],"wgBreakFrames":false,"wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy","wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgMonthNamesShort":["","Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"],"wgRelevantPageName":"Team:Tokyo_Tech","wgUserId":389,"wgUserEditCount":7,"wgUserRegistration":1465949942000,"wgUserNewMsgRevisionId":null,"wgIsProbablyEditable":false,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgWikiEditorEnabledModules":{"toolbar":false,"dialogs":false,"hidesig":true,"preview":false,"previewDialog":false,"publish":false}});
+
}</script><script>if(window.mw){
+
mw.loader.implement("user.options",function($,jQuery){mw.user.options.set({"ccmeonemails":0,"cols":80,"date":"default","diffonly":0,"disablemail":0,"editfont":"default","editondblclick":0,"editsectiononrightclick":0,"enotifminoredits":0,"enotifrevealaddr":0,"enotifusertalkpages":1,"enotifwatchlistpages":1,"extendwatchlist":0,"fancysig":0,"forceeditsummary":0,"gender":"unknown","hideminor":0,"hidepatrolled":0,"imagesize":2,"math":1,"minordefault":0,"newpageshidepatrolled":0,"nickname":"","norollbackdiff":0,"numberheadings":0,"previewonfirst":0,"previewontop":1,"rcdays":7,"rclimit":50,"rows":25,"showhiddencats":0,"shownumberswatching":1,"showtoolbar":1,"skin":"igem","stubthreshold":0,"thumbsize":5,"underline":2,"uselivepreview":0,"usenewrc":1,"watchcreations":1,"watchdefault":1,"watchdeletion":0,"watchlistdays":3,"watchlisthideanons":0,"watchlisthidebots":0,"watchlisthideliu":0,"watchlisthideminor":0,"watchlisthideown":0,"watchlisthidepatrolled":0,"watchmoves":0,"watchrollback":0,
+
"wllimit":250,"useeditwarning":1,"prefershttps":1,"language":"en","variant-gan":"gan","variant-iu":"iu","variant-kk":"kk","variant-ku":"ku","variant-shi":"shi","variant-sr":"sr","variant-tg":"tg","variant-uz":"uz","variant-zh":"zh","searchNs0":true,"searchNs1":false,"searchNs2":false,"searchNs3":false,"searchNs4":false,"searchNs5":false,"searchNs6":false,"searchNs7":false,"searchNs8":false,"searchNs9":false,"searchNs10":false,"searchNs11":false,"searchNs12":false,"searchNs13":false,"searchNs14":false,"searchNs15":false});},{},{});mw.loader.implement("user.tokens",function($,jQuery){mw.user.tokens.set({"editToken":"33a0caedf3ebee329a64b71c6e725d4d+\\","patrolToken":"4c4d7a7544c284d10170f7e42887bb47+\\","watchToken":"946ab4b63f5968e318dc5537143c3ae7+\\"});},{},{});
+
/* cache key: 2016_igem_org:resourceloader:filter:minify-js:7:aff707d8b5349b299c1e307cc91c1738 */
+
}</script>
+
<script>if(window.mw){
+
mw.loader.load(["mediawiki.page.startup","mediawiki.legacy.wikibits","mediawiki.legacy.ajax"]);
+
}</script>
+
 
+
<script src="https://2015.igem.org/common/MathJax-2.5-latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
+
</head>
+
<body class="mediawiki ltr sitedir-ltr ns-0 ns-subject page-Team_Tokyo_Tech skin-igem action-view">
+
 
+
        <script type='text/javascript'        src ='/common/tablesorter/jquery.tablesorter.min.js'></script>
+
        <link rel='stylesheet' type='text/css' href='/common/tablesorter/themes/groupparts/style.css' />
+
        <link rel='stylesheet' type='text/css' href='/common/table_styles.css' />
+
 
+
        <script type='text/javascript'        src ='/wiki/skins/Igem/resources/2016_skin.js'></script>
+
<script src="https://2015.igem.org/common/MathJax-2.5-latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
+
 
+
 
+
    <div id='globalWrapper'>
+
        <div id='top_menu_under' class='noprint'></div>
+
        <div id='top_menu_14' class='noprint'>Loading menubar.....</div> <!-- Will be replaced with the jQuery.load -->
+
<script>jQuery('#top_menu_14').load('https://2016.igem.org/cgi/top_menu_14/menubar_reply.cgi',
+
    {  t:"Team%3ATokyo%20Tech",
+
a:"View+%2FTeam%3ATokyo_Tech++View source+%2Fwiki%2Findex.php%3Ftitle%3DTeam%3ATokyo_Tech%26action%3Dedit++History+%2Fwiki%2Findex.php%3Ftitle%3DTeam%3ATokyo_Tech%26action%3Dhistory++Watch+%2Fwiki%2Findex.php%3Ftitle%3DTeam%3ATokyo_Tech%26action%3Dwatch%26token%3Dc32ec6cc2d0b811a3a60eb54e277a76d%252B%255C++Page+%2FTeam%3ATokyo_Tech++Discussion+%2Fwiki%2Findex.php%3Ftitle%3DTalk%3ATeam%3ATokyo_Tech%26action%3Dedit%26redlink%3D1++" });
+
</script>
+
 
+
        <!-- Content div contains HQ_page for HQ styles, Logo and title div, and USER CONTENT -->
+
 
+
<style type="text/css">
+
 
<!--
 
<!--
#content{
+
/********************** All style of this page ************************/
        position: relative;
+
body{
        z-index: 1;
+
}
+
--></style>
+
 
+
<div class="mw-body" role="main">
+
    <a id="top"></a>
+
 
+
            <div id="top_title">
+
                <div class="logo_2016">
+
                    <a href="https://2016.igem.org">
+
                    <img src="https://static.igem.org/mediawiki/2016/8/8b/HQ_page_logo.jpg" width="100px">
+
                    </a>
+
                </div>
+
<center>
+
        <h1 id="firstHeading" class="firstHeading">
+
            <span dir="auto">Team:Tokyo_Tech</span>
+
        </h1>
+
</center>
+
            </div>
+
 
+
            <div id="HQ_page">
+
                <div id="bodyContent">
+
            <div id="mw-content-text" lang="en" dir="ltr" class="mw-content-ltr"><p>
+
 
+
<style>
+
 
+
/********************************* DEFAULT WIKI SETTINGS  ********************************/
+
 
+
#sideMenu, #top_title {display:none;}
+
#content { padding:0px; width:1000px; margin-top:-7px; margin-left:0px; z-index: 1; postion: relative;}
+
#bodyContent h1, #bodyContent h2, #bodyContent h3, #bodyContent h4, #bodyContent h5 { margin-bottom: 0px; }
+
        div { position: relative;}
+
 
+
/********************************* MENU ********************************/
+
/* Wrapper for the menu */
+
.menu_wrapper {
+
width:150px;
+
height:100vh;
+
position:fixed;
+
padding:0px;
+
float:left;
+
background-color:#f2f2f2;
+
text-align:left;
+
}
+
 
+
/* styling for the menu items */
+
.menu_item {
+
width:100%;
+
margin:-2px 0px 0px -20px;
+
padding: 10px 10px; 
+
border-bottom: 1px solid #d3d3d3;
+
font-weight:bold;
+
color:#000000;
+
cursor: pointer;
+
}
+
 
+
/* when hovering on a menu item */
+
.menu_item:hover {
+
color:#000000;
+
background-color: #72c9b6;
+
}
+
 
+
/* decoration icon for the menu buttons*/
+
.icon {
+
float:right; 
+
font-size:16px;
+
font-weight:bold;
+
}
+
+
/* this is the icon for when the content is collapsed */
+
.plus::before {
+
content: "+";
+
}
+
/* this is the icon for when the content is expanded */
+
.less::before {
+
content: "–";
+
}
+
 
+
/* styling for the ul that creates the buttons */
+
ul.menu_items {
+
width:100%;
+
margin-left:0px;
+
padding:0px;
+
list-style: none;
+
}
+
 
+
/* styling for the li that are the menu items */
+
.menu_items li {
+
width:90%;
+
margin-top:-2px;
+
padding: 15px 0px 15px 15px ;
+
display:block;
+
border-bottom: 1px solid #d3d3d3; 
+
text-align:left;
+
font-weight:bold;
+
text-decoration:none;
+
color:#000000;
+
list-style-type:none;
+
cursor:pointer;
+
-webkit-transition: all 0.4s ease;
+
-moz-transition: all 0.4s ease;
+
-ms-transition: all 0.4s ease;
+
-o-transition: all 0.4s ease; transition: all 0.4s ease; 
+
}
+
 
+
.menu_item a {
+
width: 100%;
+
margin-left: -20px;
+
padding: 11px 90px 12px 20px;
+
text-decoration: none;
+
color:black;
+
}
+
 
+
/* When hovering on a menu item */
+
.menu_items li:hover {
+
background-color:#72c9b6;
+
color: #000000;
+
}
+
 
+
/* styling for the submenus */
+
.submenu {
+
width:100%;
+
display: none; 
+
font-weight:bold;
+
cursor:pointer;
+
 
+
}
+
 
+
/* moving the margin for the submenu ul list */
+
ul.submenu {
+
width: 100%;
+
margin: 10px 0px -11px 0px;
+
list-style: none;
+
}
+
 
+
/*styling for the submenu buttons */
+
.submenu li {
+
width: 100%;
+
margin-left: 10px;
+
margin-bottom: 0px;
+
}
+
 
+
 
+
/* hover state for the submenu buttons */
+
.submenu li a {
+
width: 100%;
+
padding: 5px 10px;
+
display: inline-block;
+
border-bottom: 1px solid #d3d3d3;
+
background-color:white;
+
text-decoration:none;
+
color:#000000;
+
}
+
 
+
 
+
 
+
.submenu li a:hover  {
+
background-color:#000000;
+
color: #72c9b6;
+
}
+
 
+
 
+
/* When the screen is smaller than 680px, the menu has the option to hide/show - this button controls that */
+
.collapsable_menu_control {
+
width:100%;
+
padding: 15px 0px;
+
display:none;
+
background-color:#000000;
+
text-align:center; 
+
font-weight:bold;
+
color:#72c9b6;
+
cursor:pointer;
+
-webkit-transition: all 0.4s ease;
+
-moz-transition: all 0.4s ease;
+
-ms-transition: all 0.4s ease;
+
-o-transition: all 0.4s ease;
+
transition: all 0.4s ease;
+
}
+
 
+
/* when hovering on that button */
+
.collapsable_menu_control:hover {
+
background-color: #72c9b6;
+
color:#000000; 
+
}
+
 
+
/********************************* CONTENT OF THE PAGE ********************************/
+
 
+
/* Wrapper for the content */
+
.content_wrapper {
+
/* margin-left:150px; */
+
width:800px;
+
padding:10px 10px;
+
/*float:left;*/
+
                background-color:white;
+
display: block;
+
  margin-left: auto;
+
  margin-right: auto;
+
                z-index: 1;
+
                position: relative;
+
}
+
 
+
#content{
+
                position: relative;
+
                width: 100%;
+
height: 100%;
+
                margin: -1;
+
                padding: 0;
+
 
     background-image: url("https://static.igem.org/mediawiki/2016/8/83/Tokyo_Tech_Background.png");
 
     background-image: url("https://static.igem.org/mediawiki/2016/8/83/Tokyo_Tech_Background.png");
 
     background-repeat: no-repeat;
 
     background-repeat: no-repeat;
Line 269: Line 12:
 
     background-size: cover;
 
     background-size: cover;
 
     background-attachment: fixed;
 
     background-attachment: fixed;
        }
+
}
 +
#globalWrapper, #content{
 +
    background: transparent;
 +
}
 +
#content{
 +
//    background-image: url("https://static.igem.org/mediawiki/2016/8/83/Tokyo_Tech_Background.png");
 +
}
 +
/**********************************************************************/
 +
#main_contents{
 +
    margin: 0 auto;
 +
    width: 90%;
 +
    min-width: 880px;
 +
    max-width: 1100px;
 +
}
 +
#main_contents img{
 +
width: 400px;
 +
}
 +
#main_contents img:before{
 +
margin: 0 auto;
 +
}
 +
.container{
 +
    margin: 5px auto;
 +
    background: #ffffff;
 +
border: 1px solid #583612;
 +
}
 +
.container_top h1{
 +
margin-top: 1px;
 +
font-size: 36px;
 +
}
 +
.container_header{
 +
    background: #ffffff;
 +
    text-align: center;
 +
}
 +
.container_header span{
 +
    border-bottom: 2px solid #583612;
 +
}
 +
.container_contents{
 +
line-height: 1.5em;
 +
width: 800px;
 +
margin: 0 auto;
 +
padding-bottom: 10px;
 +
}
 +
#main_contents .normal_text{
 +
font-size: 18px;
 +
text-indent: 18px;
 +
text-align: justify;
 +
// padding: 18px;
 +
    font-family: 'Century', serif;
 +
}
 +
.non_dotted_list{
 +
list-style: none;
 +
}
 +
/************************* Show/Hide setting ***************************/
 +
.on{
 +
display: block;
 +
-webkit-transiton: all 0.6s ease;
 +
transition: all 0.6s ease;
 +
}
 +
.off{
 +
display: none;
 +
-webkit-transiton: all 0.6s ease;
 +
transition: all 0.6s ease;
 +
}
 +
/************************** this page setting ***************************/
 +
#modeling_detail_wrapper{
 +
font-size: 8px;
 +
margin: 0;
 +
}
 +
#modeling_detail_wrapper table{
 +
font-size: 8px;
 +
}
  
/*LAYOUT */
+
#modeling_detail_expressions{
.column  {  
+
width: 45%;
padding: 10px 0px;
+
margin-right: auto;
background-color:white;  
+
float: left;
}
+
}
 +
#modeling_detail_parameters{
 +
width: 45%;
 +
margin-left: auto;
 +
float: left;
 +
}
  
.full_size {
+
#main_contents p.caption{
width:100%;  
+
font-size: 16px;
}
+
}
  
.full_size img {
+
--></style>
padding: 10px 15px;
+
<script src="https://2015.igem.org/common/MathJax-2.5-latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
width:96.5%;
+
<script type="text/x-mathjax-config">
}
+
MathJax.Hub.Config({
 
+
// TeX: { equationNumbers: {autoNumber: "AMS"} },
.half_size {
+
displayAlign: "left",
width: 50%;
+
displayIndent: "2em"
}
+
});
.half_size img {
+
</script>
padding: 10px 15px;
+
width: 93%;
+
}
+
 
+
 
+
.clear {
+
clear:both;
+
}
+
 
+
.highlight {
+
width: 90%;
+
margin: auto;
+
padding: 15px 5px;
+
background-color: #f2f2f2;
+
}
+
 
+
 
+
/*STYLING */
+
 
+
/* styling for the titles */
+
.content_wrapper h1, .content_wrapper h2 {
+
padding:5px 15px;
+
border-bottom:0px;
+
color:#0d9a25;
+
 
+
}
+
.content_wrapper h3, .content_wrapper h4, .content_wrapper h5, .content_wrapper h6 {
+
padding:5px 15px;
+
border-bottom:0px;
+
color: #000000; 
+
}
+
 
+
 
+
/* font and text */
+
.content_wrapper p {
+
padding:0px 15px;
+
font-size: 13px;
+
font-family:Tahoma, Geneva, sans-serif;
+
}
+
 
+
/* Links */
+
.content_wrapper a {
+
font-weight: bold;
+
text-decoration-color:#1f407a;
+
color: #1f407a;
+
-webkit-transition: all 0.4s ease;
+
-moz-transition: all 0.4s ease;
+
-ms-transition: all 0.4s ease;
+
-o-transition: all 0.4s ease;
+
transition: all 0.4s ease;
+
}
+
 
+
/* hover for the links */
+
.content_wrapper a:hover {
+
text-decoration:none;
+
color:#000000;
+
}
+
 
+
/* non numbered lists */
+
.content_wrapper ul {
+
padding:0px 20px;
+
font-size: 13px;
+
font-family:Tahoma, Geneva, sans-serif;
+
}
+
 
+
/* numbered lists */
+
.content_wrapper ol {
+
padding:0px;
+
font-size: 13px;
+
font-family:Tahoma, Geneva, sans-serif;
+
}
+
 
+
/* Table */
+
.content_wrapper table {
+
width: 97%;
+
margin:15px 10px;
+
border: 1px solid #d3d3d3;
+
border-collapse: collapse;
+
}
+
 
+
/* table cells */
+
.content_wrapper  td {
+
padding: 10px;
+
vertical-align: text-top;
+
border: 1px solid #d3d3d3;
+
border-collapse: collapse;
+
}
+
 
+
/* table headers */
+
.content_wrapper th {
+
padding: 10px;
+
vertical-align: text-top;
+
border: 1px solid #d3d3d3;
+
border-collapse: collapse;
+
background-color:#f2f2f2;
+
}
+
 
+
        #text_wrapper{
+
                position: relative;
+
                z-index: 10;
+
        }
+
 
+
/* Button class */
+
.button_click {
+
margin: 10px auto;
+
padding: 15px; width:12%; 
+
text-align:center;
+
font-weight:bold;
+
background-color: #72c9b6;
+
cursor:pointer; 
+
-webkit-transition: all 0.4s ease;
+
-moz-transition: all 0.4s ease;
+
-ms-transition: all 0.4s ease;
+
-o-transition: all 0.4s ease;
+
transition: all 0.4s ease;
+
}
+
 
+
/* button class on hover */
+
.button_click:hover {
+
background-color:#000000;
+
color:#72c9b6;
+
}
+
 
+
/********************************* RESPONSIVE STYLING ********************************/
+
 
+
/* IF THE SCREEN IS LESS THAN 1000PX */
+
 
+
@media only screen and (max-width: 1000px) {
+
 
+
#content {width:100%; }
+
.menu_wrapper {width:15%;}
+
.content_wrapper {margin-left: 10%; margin-right: 10%; width:auto;}
+
.menu_item {display:block;}
+
.icon {display:none;}
+
.highlight {padding:10px 0px;}
+
}
+
 
+
 
+
/* IF THE SCREEN IS LESS THAN 680PX */
+
 
+
@media only screen and (max-width: 680px) {
+
.collapsable_menu_control { display:block;}
+
.menu_item {display:none;}
+
.menu_wrapper { width:100%; height: 15%; position:relative;}
+
.content_wrapper { margin-left: 10%; margin-right: 10%; width:auto; }
+
.column.half_size {width:100%; }
+
.column img { width: 100%; padding: 5px 0px;}
+
.icon {display:block;}
+
.highlight {padding:15px 5px;}
+
}
+
 
+
</style>
+
 
+
 
+
 
+
 
+
<!--- THIS IS WHERE THE HTML BEGINS --->
+
 
+
 
+
<!-- This tells the browser that your page is responsive -->
+
 
+
<head>
+
<meta name="viewport" content="width=device-width, initial-scale=1">  
+
 
</head>
 
</head>
 +
<body>
 +
<div id="main_contents">
 +
<div id="page_header" class="container container_top">
 +
<h1 align="center">Detail Description</h1>
 +
</div><!-- page_header -->
 +
<div id="modeling_development" class="container">
 +
<div id="modeling_development_header" class="container_header">
 +
<h2><span>Modeling Development</span></h2>
 +
</div><!-- /modeling_development_header -->
 +
<div id="modeling_development_contents" class="container_contents">
 +
<p class="normal_text">To simulate the cell-cell communication system, we developed an ordinary differential equation model.
 +
The following sentences describe how the equations were developed.
 +
And in this page we expound not only on the model with the Maz system, which we selected as the best TA system for our project, but also on the one with the Yaf system, which we chose as an alternative.</p>
 +
</div><!-- modeling_development_contents -->
 +
<div id="modeling_maz_contents" class="container_contents">
 +
<a href="https://static.igem.org/mediawiki/2016/5/52/T--Tokyo_Tech--Model_Details_1.png"><img src="https://static.igem.org/mediawiki/2016/5/52/T--Tokyo_Tech--Model_Details_1.png" /></a>
 +
<p class="caption"><span style="font-weight: bold;">Fig. 4-2-1. </span> Maz System Gene Circuit</p>
 +
<div id="modeling_detail" class="off">
 +
<div id="modeling_detail_wrapper">
 +
<div id="modeling_detail_expressions">
 +
<h2>Differencial Equations</h2>
 +
<h3>Snow White</h3>
 +
\begin{equation}
 +
\frac{d[mRNA_{RFP}]}{dt} = k - d[mRNA_{RFP}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{RFP}}})[mRNA_{RFP}][DiMazF]
 +
\end{equation}
 +
\begin{equation}
 +
\frac{d[mRNA_{RhlI}]}{dt} =  leak_{Plux} + \frac{\kappa_{Lux}[C12]^{n_{Lux}}}{K_{mLux}^{n_{Lux}} + [C12]^{n_{Lux}}} - d[mRNA_{RhlI}] - F_{DiMazF}f[mRNA_{RhlI}][DiMazF]
 +
\end{equation}
 +
\begin{equation}
 +
\frac{d[RFP]}{dt} = \alpha [mRNA_{RFP}] - d_{RFP}[RFP]
 +
\end{equation}
 +
\begin{equation}
 +
\frac{d[RhlI]}{dt} = \alpha [mRNA_{RhlI}] - d_{RhlI}[RhlI]
 +
\end{equation}
 +
\begin{equation}
 +
\frac{d[C4]}{dt} = p_{C4}[RhlI]P_{Snow White} - d_{C4}[C4]
 +
\end{equation}
 +
\begin{equation}
 +
\frac{d[mRNA_{MazF}]}{dt} =  leak_{Plux} + \frac{\kappa_{Lux}[C12]^{n_{Lux}}}{K_{mLux}^{n_{Lux}}+ [C12]^{n_{Lux}}} \\
 +
       - d[mRNA_{MazF}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazF}}})[mRNA_{MazF}][DiMazF]
 +
\end{equation}
 +
\begin{equation}
 +
\frac{d[mRNA_{MazE}]}{dt} = k - d[mRNA_{MazE}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazE}}})[mRNA_{MazE}][DiMazF]
 +
\end{equation}
 +
\begin{equation}
 +
\frac{d[MazF]}{dt} = \alpha [mRNA_{MazF}] - 2k_{DiMazF}[MazF] + 2k_{-DiMazF}[DiMazF] - d_{MazF}[MazF]
 +
\end{equation}
 +
\begin{equation}
 +
\frac{d[DiMazF]}{dt} = k_{DiMazF}[MazF] - k_{-DiMazF}[DiMazF] - 2k_{Hexa}[DiMazE][DiMazF]^2 \\
 +
       + 2k_{-Hexa}[MazHexamer] - d_{DiMazF}[DiMazF]
 +
\end{equation}
 +
\begin{equation}
 +
\frac{d[MazE]}{dt} = \alpha [mRNA_{MazE}] - 2k_{DiMazE}[MazE] + 2k_{-DiMazE}[DiMazE] - d_{MazE}[MazE]
 +
\end{equation}
 +
\begin{equation}
 +
\frac{d[DiMazE]}{dt} = k_{DiMazE}[MazE] - k_{-DiMazE}[DiMazE] - k_{Hexa}[DiMazE][DiMazF]^2 \\
 +
       + k_{-Hexa}[MazHexamer] - d_{DiMazE}[DiMazE]
 +
\end{equation}
 +
\begin{equation}
 +
\frac{d[MazHexa]}{dt} = k_{Hexa}[DiMazE][DiMazF]^2 - k_{-Hexa}[MazHexa] - d_{Hexa}[MazHexa]
 +
\end{equation}
 +
\begin{equation}
 +
\frac{dP_{Snow White}}{dt} = g \frac{E_{DiMazF}}{E_{DiMazF}+[DiMazF]}\left(1- \frac{P_{Snow White}+P_{Queen}+P_{Prince}}{P_{max}} \right) P_{Snow White}
 +
\end{equation}
  
 +
<h3>Queen</h3>
 +
\begin{equation}
 +
\frac{d[mRNA_{GFP}]}{dt} = k - d[mRNA_{GFP}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{GFP}}})[mRNA_{GFP}][DiMazF]
 +
\end{equation}
 +
\begin{equation}
 +
\frac{d[mRNA_{LasI}]}{dt} =  leak_{Prhl} + \frac{\kappa_{Rhl}[C4]^{n_{Rhl}}}{K_{mRhl}^{n_{Rhl}} + [C4]^{n_{Rhl}}} \\
 +
       - d[mRNA_{LasI}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{LasI}}})[mRNA_{LasI}][DiMazF]
 +
\end{equation}
 +
\begin{equation}
 +
\frac{d[GFP]}{dt} = \alpha [mRNA_{GFP}] - d_{GFP}[GFP]
 +
\end{equation}
 +
\begin{equation}
 +
\frac{d[LasI]}{dt} = \alpha [mRNA_{LasI}] - d_{LasI}[LasI]
 +
\end{equation}
 +
\begin{equation}
 +
\frac{d[C12]}{dt} = p_{C12}[LasI]P_{Queen} - d_{C12}[C12] - D[C12][AmiE]
 +
\end{equation}
 +
\begin{equation}
 +
\frac{d[mRNA_{MazF}]}{dt} =  leak_{Plux} + \frac{\kappa_{Rhl}[C4]^{n_{Rhl}}}{K_{mRhl}^{n_{Rhl}} + [C4]^{n_{Rhl}}} \\
 +
       - d[mRNA_{MazF}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazF}}})[mRNA_{MazF}][DiMazF]
 +
\end{equation}
 +
\begin{equation}
 +
\frac{d[mRNA_{MazE}]}{dt} = k - d[mRNA_{MazE}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazE}}})[mRNA_{MazE}][DiMazF]
 +
\end{equation}
 +
\begin{equation}
 +
\frac{d[MazF]}{dt} = \alpha [mRNA_{MazF}] - 2k_{DiMazF}[MazF] + 2k_{-DiMazF}[DiMazF] - d_{MazF}[MazF]
 +
\end{equation}
 +
\begin{equation}
 +
\frac{d[DiMazF]}{dt} = k_{DiMazF}[MazF] - k_{-DiMazF}[DiMazF] - 2k_{Hexa}[DiMazE][DiMazF]^2 \\
 +
       + 2k_{-Hexa}[MazHexamer] - d_{DiMazF}[DiMazF]
 +
\end{equation}
 +
\begin{equation}
 +
\frac{d[MazE]}{dt} = \alpha [mRNA_{MazE}] - 2k_{DiMazE}[MazE] + 2k_{-DiMazE}[DiMazE] - d_{MazE}[MazE]
 +
\end{equation}
 +
\begin{equation}
 +
\frac{d[DiMazE]}{dt} = k_{DiMazE}[MazE] - k_{-DiMazE}[DiMazE] - k_{Hexa}[DiMazE][DiMazF]^2 \\
 +
       + k_{-Hexa}[MazHexamer] - d_{DiMazE}[DiMazE]
 +
\end{equation}
 +
\begin{equation}
 +
\frac{d[MazHexa]}{dt} = k_{Hexa}[DiMazE][DiMazF]^2 - k_{-Hexa}[MazHexa] - d_{Hexa}[MazHexa]
 +
\end{equation}
 +
\begin{equation}
 +
\frac{dP_{Queen}}{dt} = g \frac{E_{DiMazF}}{E_{DiMazF}+[DiMazF]}\left(1- \frac{P_{Snow White}+P_{Queen}+P_{Prince}}{P_{max}}\right) P_{Queen}\\
 +
\end{equation}
  
 +
<h3>Prince</h3>
 +
\begin{equation}
 +
\frac{d[mRNA_{AmiE}]}{dt} = leak_{Plux} + \frac{\kappa_{Lux}[C12]^n}{K_{mLux}^n + [C12]^n} - d[mRNA_{AmiE}]
 +
\end{equation}
 +
\begin{equation}
 +
\frac{d[AmiE]}{dt} = \alpha [mRNA_{AmiE}]P_{Prince} - d_{AmiE}[AmiE]
 +
\end{equation}
 +
\begin{equation}
 +
\frac{dP_{Prince}}{dt} = g\left(1- \frac{P_{Snow White}+P_{Queen}+P_{Prince}}{P_{max}}\right) P_{Prince}
 +
\end{equation}
 +
</div><!-- /modeling_detail_expressions -->
 +
<div id="modeling_detail_parameter">
 +
<h2>Explanation about Parameters</h2>
 +
<table border="1" style="margin: auto;">
 +
<tbody>
 +
<tr><td>Parameter </td><td> Description </td></tr>
 +
<tr><td>$$g$$ </td><td> Growth rate of each cells</td></tr>
 +
<tr><td>$$P_{max}$$ </td><td> Carrying capacity </td></tr>
 +
<tr><td>$$E_{DiMazF}$$ </td><td> Effect of MazF dimer on growth rate</td></tr>
 +
<tr><td>$$k$$ </td><td> Transcription rate of downstream of Pcon </td></tr>
 +
<tr><td>$$leak_{Plux}$$ </td><td> Leakage of Plux </td></tr>
 +
<tr><td>$$leak_{Prhl}$$ </td><td> Leakage of Prhl </td></tr>
 +
<tr><td>$$\kappa_{Lux}$$ </td><td> Maximum transcription rate of mRNA under Plux</td></tr>
 +
<tr><td>$$\kappa_{Rhl}$$ </td><td> Maximum transcription rate of downstream of Prhl </td></tr>
 +
<tr><td>$$n_{Lux}$$ </td><td> Hill coefficient for Plux</td></tr>
 +
<tr><td>$$n_{Rhl}$$ </td><td> Hill coefficient for Prhl</td></tr>
 +
<tr><td>$$K_{mLux}$$ </td><td> Lumped paremeter for the Lux System</td></tr>
 +
<tr><td>$$K_{mRhl}$$ </td><td> Lumped paremeter for the Rhl System</td></tr>
 +
<tr><td>$$F_{DiMazF}$$ </td><td> Cutting rate at ACA sequences on mRNA by MazF dimer</td></tr>
 +
<tr><td>$$f$$ </td><td> The probability of distinction of ACA sequencess in each mRNA</td></tr>
 +
<tr><td>$$f_{mRNA_{RFP}}$$ </td><td> The number of ACA sequences in \(mRNA_{RFP}\)</td></tr>
 +
<tr><td>$$f_{mRNA_{GFP}}$$ </td><td> The number of ACA sequences in \(mRNA_{GFP}\)</td></tr>
 +
<tr><td>$$f_{mRNA_{RhlI}}$$ </td><td> The number of ACA sequences in \(mRNA_{RhlI}\) </td></tr>
 +
<tr><td>$$f_{mRNA_{LasI}}$$ </td><td> The number of ACA sequences in \(mRNA_{LasI}\)</td></tr>
 +
<tr><td>$$f_{mRNA_{MazF}}$$ </td><td> The number of ACA sequences in \(mRNA_{MazF}\) </td></tr>
 +
<tr><td>$$f_{mRNA_{MazE}}$$ </td><td> The number of ACA sequences in \(mRNA_{MazE}\) </td></tr>
 +
<tr><td>$$\alpha$$ </td><td> Translation rate of Protein </td></tr>
 +
<tr><td>$$k_{DiMazF}$$ </td><td> Formation rate of MazF dimer </td></tr>
  
 +
<tr><td>$$k_{-DiMazF}$$ </td><td> Dissociation rate of MazF dimer </td></tr>
 +
<tr><td>$$k_{DiMazE}$$ </td><td> Formation rate of MazE dimer </td></tr>
 +
<tr><td>$$k_{-DiMazE}$$ </td><td> Dissociation rate of MazE dimer </td></tr>
 +
<tr><td>$$k_{Hexa}$$ </td><td> Formation rate of Maz hexamer </td></tr>
 +
<tr><td>$$k_{-Hexa}$$ </td><td> Dissociation rate of Maz hexamer</td></tr>
 +
<tr><td>$$p_{C4}$$ </td><td> Production rate of C4HSL by RhlI</td></tr>
 +
<tr><td>$$p_{C12}$$ </td><td> Production rate of 3OC12HSL by LuxI </td></tr>
 +
<tr><td>$$D$$ </td><td> Decomposition rate of 3OC12HSL by AmiE </td></tr>
 +
<tr><td>$$d$$ </td><td> Degradation rate of mRNA </td></tr>
 +
<tr><td>$$d_{RFP}$$ </td><td> Degradation rate of RFP</td></tr>
 +
<tr><td>$$d_{GFP}$$ </td><td> Degradation rate of GFP </td></tr>
 +
<tr><td>$$d_{RhlI}$$ </td><td> Degradation rate of RhlI</td></tr>
 +
<tr><td>$$d_{LasI}$$ </td><td> Degradation rate of LasI</td></tr>
 +
<tr><td>$$d_{MazF}$$ </td><td> Degradation rate of MazF</td></tr>
 +
<tr><td>$$d_{DiMazF}$$ </td><td> Degradation rate of MazF dimer</td></tr>
 +
<tr><td>$$d_{MazE}$$ </td><td> Degradation rate of MazE </td></tr>
 +
<tr><td>$$d_{DiMazE}$$ </td><td> Degradation rate of MazE dimer </td></tr>
 +
<tr><td>$$d_{Hexa}$$ </td><td> Degradation rate of Maz Hexamer </td></tr>
 +
<tr><td>$$d_{C4}$$ </td><td> Degradation rate of C4HSL </td></tr>
 +
<tr><td>$$d_{C12}$$ </td><td> Degradation rate of 3OC12HSL </td></tr>
 +
<tr><td>$$d_{AmiE}$$ </td><td> Degradation rate of AmiE </td></tr>
  
<!--
+
</tbody>
<div class="menu_wrapper" >
+
</table>
 +
</div><!-- /modeling_detail_parameter -->
 +
</div><!-- /modeling_detail_wrapper -->
 +
</div><!-- /modeling_detail -->
 +
<p class="normal_text" style="text-align:center;"><a href="javascript:void(0);" onClick="show('modeling_detail');" class="showHidden">Expressions</a></p>
 +
<ul id="modeling_maz_list" class="non_dotted_list">
 +
<li><h2>1. Cell Population</h2>
 +
<p>$$ \frac{dP_{Snow White}}{dt} = g \frac{E_{DiMazF}}{E_{DiMazF}+[DiMazF]}\left(1- \frac{P_{Snow White}+P_{Queen}+P_{Prince}}{P_{max}} \right) P_{Snow White} $$ <br /> $$  \tag{1-1} $$</p>
 +
<p>$$
 +
\frac{dP_{Queen}}{dt} = g \frac{E_{DiMazF}}{E_{DiMazF}+[DiMazF]}\left(1- \frac{P_{Snow White}+P_{Queen}+P_{Prince}}{P_{max}}\right) P_{Queen}$$ <br /> $$ \tag{1-2} $$</p>
 +
<p>$$
 +
\frac{dP_{Prince}}{dt} = g\left(1- \frac{P_{Snow White}+P_{Queen}+P_{Prince}}{P_{max}}\right) P_{Prince} \tag{1-3} $$ </p>
 +
<p class="caption"><span style="font-weight: bold;">Eq.1. </span> Differential Equation of Cell Population</p>
 +
<p class="normal_text">The equations above describe how cells grow in the culture.
 +
Equations (1-1), (1-2) and (1-3) describe the populations of Snow White, the Queen and the Prince. (1-3) is described by the logistic growth equation, but (1-1) and (1-2) are represented by the growth inhibition by MazF dimers.
 +
This factor is designed so that its value is small when the concentration of MazF dimers is low, and its value converges to 1 when the concentration of MazF dimers is high.</p>
 +
</li><!-- /1.1. Cell Population -->
 +
<li><h2>2. Maz System</h2>
 +
<ul id="modeling_maz_system" class="non_dotted_list">
 +
<li><h3>2.1. Expression of Maz System</h3>
 +
<p class="normal_text">After translation, MazE and MazF each form  an stable dimer which can be activated to exert its function.</p>
 +
<a href="https://static.igem.org/mediawiki/2016/8/88/T--Tokyo_Tech--Model_Details_2.png"><img src="https://static.igem.org/mediawiki/2016/8/88/T--Tokyo_Tech--Model_Details_2.png" /></a><br />
 +
<a href="https://static.igem.org/mediawiki/2016/c/c3/T--Tokyo_Tech--Model_Details_3.png"><img src="https://static.igem.org/mediawiki/2016/c/c3/T--Tokyo_Tech--Model_Details_3.png" /></a>
 +
<p class="normal_text">Two MazE dimers sandwich the MazF dimer, forming MazF2-MazE2-MazF2 heterohexamers and suppressing the toxicity of the MazF dimers.</p>
 +
<a href="https://static.igem.org/mediawiki/2016/e/ea/T--Tokyo_Tech--Model_Details_4.png"><img src="https://static.igem.org/mediawiki/2016/e/ea/T--Tokyo_Tech--Model_Details_4.png" /></a>
 +
<a href="https://static.igem.org/mediawiki/2016/3/32/T--Tokyo_Tech--Model_Details_5.png"><img src="https://static.igem.org/mediawiki/2016/3/32/T--Tokyo_Tech--Model_Details_5.png" style="width: 500px;" /></a>
 +
<p class="caption"><span style="font-weight: bold">Fig. 4-2-2. </span> Reaction of Maz System</p>
 +
<p class="normal_text">The mRNAs of Snow White and the Queen decrease by their original degradation and by the cleavage at ACA sequences by MazF dimers.</p>
 +
<p class="normal_text">Applying mass action kinetic laws, we obtain the following set of differential equations.</p>
 +
<h3>Snow White</h3>
 +
<p>$$
 +
\frac{d[mRNA_{MazF}]}{dt} =  leak_{Plux} + \frac{\kappa_{Lux}[C12]^{n_{Lux}}}{K_{mLux}^{n_{Lux}}+ [C12]^{n_{Lux}}} \\
 +
       - d[mRNA_{MazF}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazF}}})[mRNA_{MazF}][DiMazF] $$<br />$$ \tag{2-1} $$</p>
 +
<p>$$ \frac{d[MazF]}{dt} = \alpha [mRNA_{MazF}] - 2k_{DiMazF}[MazF] + 2k_{-DiMazF}[DiMazF] - d_{MazF}[MazF] $$ <br />
 +
$$\tag{2-2}$$</p>
 +
<p>$$ \frac{d[DiMazF]}{dt} = k_{DiMazF}[MazF] - k_{-DiMazF}[DiMazF] - 2k_{Hexa}[DiMazE][DiMazF]^2 \\
 +
       + 2k_{-Hexa}[MazHexamer] - d_{DiMazF}[DiMazF] $$<br />$$ \tag{2-3} $$</p>
 +
<p>$$ \frac{d[mRNA_{MazE}]}{dt} = k - d[mRNA_{MazE}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazE}}})[mRNA_{MazE}][DiMazF] $$ <br />$$ \tag{2-4} $$</p>
 +
<p>$$\frac{d[MazE]}{dt} = \alpha [mRNA_{MazE}] - 2k_{DiMazE}[MazE] + 2k_{-DiMazE}[DiMazE] - d_{MazE}[MazE]$$
 +
<br />$$\tag{2-5}$$</p>
 +
<p>$$
 +
\frac{d[DiMazE]}{dt} = k_{DiMazE}}[MazE] - k_{-DiMazE}[DiMazE] - k_{Hexa}[DiMazE][DiMazF]^2 \\
 +
       + k_{-Hexa}[MazHexamer] - d_{DiMazE}[DiMazE]$$ <br />$$\tag{2-6} $$</p>
 +
<p>$$\frac{d[MazHexa]}{dt} = k_{Hexa}[DiMazE][DiMazF]^2 - k_{-Hexa}[MazHexa] - d_{Hexa}[MazHexa]$$ <br />$$ \tag{2-7}$$</p>
 +
<h3>Queen</h3>
 +
<p>$$
 +
\frac{d[mRNA_{MazF}]}{dt} =  leak_{Plux} + \frac{\kappa_{Lux}[C12]^{n_{Lux}}}{K_{mLux}^{n_{Lux}}+ [C12]^{n_{Lux}}} \\
 +
       - d[mRNA_{MazF}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazF}}})[mRNA_{MazF}][DiMazF] $$<br />$$ \tag{2-8} $$</p>
 +
<p>$$ \frac{d[MazF]}{dt} = \alpha [mRNA_{MazF}] - 2k_{DiMazF}[MazF] + 2k_{-DiMazF}[DiMazF] - d_{MazF}[MazF] $$ <br />
 +
$$\tag{2-9}$$</p>
 +
<p>$$ \frac{d[DiMazF]}{dt} = k_{DiMazF}[MazF] - k_{-DiMazF}[DiMazF] - 2k_{Hexa}[DiMazE][DiMazF]^2 \\
 +
       + 2k_{-Hexa}[MazHexamer] - d_{DiMazF}[DiMazF] $$<br />$$ \tag{2-10} $$</p>
 +
<p>$$ \frac{d[mRNA_{MazE}]}{dt} = k - d[mRNA_{MazE}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazE}}})[mRNA_{MazE}][DiMazF] $$ <br />$$ \tag{2-11} $$</p>
 +
<p>$$\frac{d[MazE]}{dt} = \alpha [mRNA_{MazE}] - 2k_{DiMazE}[MazE] + 2k_{-DiMazE}[DiMazE] - d_{MazE}[MazE]$$
 +
<br />$$\tag{2-12}$$</p>
 +
<p>$$
 +
\frac{d[DiMazE]}{dt} = k_{DiMazE}[MazE] - k_{-DiMazE}[DiMazE] - k_{Hexa}[DiMazE][DiMazF]^2 \\
 +
       + k_{-Hexa}[MazHexamer] - d_{DiMazE}[DiMazE]$$ <br />$$\tag{2-13} $$</p>
 +
<p>$$\frac{d[MazHexa]}{dt} = k_{Hexa}[DiMazE][DiMazF]^2 - k_{-Hexa}[MazHexa] - d_{Hexa}[MazHexa]$$ <br />$$ \tag{2-14}$$</p>
 +
<p class="caption"><span style="font-weight: bold">Eq. 2. </span>Differential Equations of Maz System</p>
 +
<p class="normal_text">Equations (2-1) and (2-8) describe the concentration of mRNAs under the AHL inducing promoters.
 +
Thus, they comprise terms of production by leaky expressions of promoters, terms of production by Hill function dependent on the concentration of C12/C4, terms of original degradation and terms of degradation from cleavage at ACA sequences by MazF dimers.
 +
Since Equations (2-2), (2-3), (2-5), (2-6), (2-7), (2-9), (2-10), (2-12), (2-13) and (2-14) describe the concentrations of complexes, mainly they comprise terms of production and terms of binding and dissociation.</p>
 +
</li><!-- /1.2.1. Expression of Maz System -->
 +
<li><h3>2.2. Cleavage by MazF dimers</h3>
 +
<p class="normal_text">MazF dimers recognize and cleave ACAs in mRNAs, thus acting as Toxin.</p>
 +
<p class="normal_text">We estimated the rate of recognitions of ACA sequences by MazF dimers at \(1-(1-f)^n\), where the number of ACA sequences in mRNA.</p>
 +
<p class="normal_text">Then, we expressed the rate of degradation by MazF dimers in \(F(1-(1-f)^{f_{mRNA}})\) and obtain the following set of differential equations.</p>
 +
<h3>Snow White</h3>
 +
<p>$$\frac{d[mRNA_{RFP}]}{dt} = k - d[mRNA_{RFP}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{RFP}}})[mRNA_{RFP}][DiMazF]
 +
$$ <br />$$ \tag{3-1} $$</p>
 +
<p>$$
 +
\frac{d[mRNA_{RhlI}]}{dt} =  leak_{Plux} + \frac{\kappa_{Lux}[C12]^{n_{Lux}}}{K_{mLux}^{n_{Lux}} + [C12]^{n_{Lux}}} - d[mRNA_{RhlI}] - F_{DiMazF}$$
 +
<br />$$ \tag{3-2} $$</p>
 +
<p>$$\frac{d[mRNA_{MazF}]}{dt} =  leak_{Plux} + \frac{\kappa_{Lux}[C12]^{n_{Lux}}}{K_{mLux}^{n_{Lux}}+ [C12]^{n_{Lux}}} \\
 +
       - d[mRNA_{MazF}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazF}}})[mRNA_{MazF}][DiMazF]
 +
$$ <br /> $$\tag{3-3}$$</p>
 +
<p>$$\frac{d[mRNA_{MazE}]}{dt} = k - d[mRNA_{MazE}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazE}}})[mRNA_{MazE}][DiMazF]$$
 +
<br />$$ \tag{3-4} $$</p>
 +
<h3>Queen</h3>
 +
<p>$$\frac{d[mRNA_{GFP}]}{dt} = k - d[mRNA_{GFP}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{GFP}}})[mRNA_{GFP}][DiMazF]
 +
$$<br />$$ \tag{3-5} %%</p>
 +
<p>$$
 +
\frac{d[mRNA_{LasI}]}{dt} =  leak_{Prhl} + \frac{\kappa_{Rhl}[C4]^{n_{Rhl}}}{K_{mRhl}^{n_{Rhl}} + [C4]^{n_{Rhl}}} \\
 +
       - d[mRNA_{LasI}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{LasI}}})[mRNA_{LasI}][DiMazF] $$ <br />$$ \tag{3-6} $$</p>
 +
<p>$$\frac{d[mRNA_{MazF}]}{dt} =  leak_{Plux} + \frac{\kappa_{Lux}[C12]^{n_{Lux}}}{K_{mLux}^{n_{Lux}}+ [C12]^{n_{Lux}}} \\
 +
       - d[mRNA_{MazF}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazF}}})[mRNA_{MazF}][DiMazF]
 +
$$ <br /> $$\tag{3-7}$$</p>
 +
<p>$$\frac{d[mRNA_{MazE}]}{dt} = k - d[mRNA_{MazE}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazE}}})[mRNA_{MazE}][DiMazF]$$
 +
<br />$$ \tag{3-8} $$</p>
 +
<p class="caption"><span style="font-weight: bold">Eq. 3. </span>Differential Equations of mRNAs</p>
 +
<p class="normal_text">The equations above comprise terms of production, terms of original degradation and terms of degradation from cleavage at ACA sequences by MazF dimers.
 +
</p>
 +
</li><!-- /1.2.2. Cleavage by MazF dimers -->
 +
</ul><!-- /modeling_maz_system -->
 +
</li><!-- /1.2. Maz System -->
 +
<li><h2>3. Signal Molecules</h2>
 +
<a href="https://static.igem.org/mediawiki/2016/c/c4/T--Tokyo_Tech--Model_Details_6.png"><img src="https://static.igem.org/mediawiki/2016/c/c4/T--Tokyo_Tech--Model_Details_6.png" style="width: 300px;" /></a>
 +
<p class="caption"><span style="font-weight:bold;">Fig. 4-2-3. </span> Reaction of Signal Molecules</p>
 +
<p class="normal_text">Snow White expresses RhlI under Plux induced by C12, the Queen expresses LasI under Prhl induced by C4 and the Prince expresses AmiE under Plux induced by C12.</p>
 +
<p class="normal_text">The mRNAs of Snow White and the Queen decrease from original degradation and the cleavage at ACA sequences by MazF dimers.
 +
On the other hand, those of the Prince don’t have any MazF gene so they decrease from only original degradation.</p>
 +
<p class="normal_text">After translation, C12AHL and C4 are enzymatically synthesized by LasI and RhlI from some substrates respectively.
 +
For simplicity, we assumed that the amount of substrates is sufficient so that the C12AHL / C4 synthesis rate per cell is estimated to be proportional to the LasI and RhlI concentrations.</p>
 +
<p class="normal_text">C4 decreases from original degradation meanwhile C12AHL decreases from both original degradation and degradation by AmiE, which Prince products.</p>
 +
<p class="normal_text">Applying mass action kinetic laws, we obtain the following set of differential equations.</p>
 +
<p>$$ \frac{d[mRNA_{RhlI}]}{dt} =  leak_{Plux} + \frac{\kappa_{Lux}[C12]^{n_{Lux}}}{K_{mLux}^{n_{Lux}} + [C12]^{n_{Lux}}} - d[mRNA_{RhlI}] - F_{DiMazF}f[mRNA_{RhlI}][DiMazF] $$<br />$$\tag{4-1}$$</p>
 +
<p>$$\frac{d[RhlI]}{dt} = \alpha [mRNA_{RhlI}] - d_{RhlI}[RhlI] \tag{4-2}$$</p>
 +
<p>$$ \frac{d[Rhl AHL]}{dt} = p_{Rhl}[RhlI]P_{Snowwhite} - d_{RhlAHL}[RhlAHL] \tag{4-3} $$</p>
 +
<p>$$ \frac{d[mRNA_{LasI}]}{dt} =  leak_{Prhl} + \frac{\kappa_{Rhl}[C4]^{n_{Rhl}}}{K_{mRhl}^{n_{Rhl}} + [C4]^{n_{Rhl}}} - d[mRNA_{LasI}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{LasI}}})[mRNA_{LasI}][DiMazF] $$<br />$$\tag{4-4}$$</p>
 +
<p>$$\frac{d[LasI]}{dt} = \alpha [mRNA_{LasI}] - d_{LasI}[LasI] \tag{4-5}$$</p>
 +
<p>$$\frac{d[LasAHL]}{dt} = p_{Las}[LasI]P_{Stepmother} - d_{LasAHL}[LasAHL] - D[LasAHL][AmiE]$$ <br /> $$\tag{4-6}$$</p>
 +
<p>$$\frac{d[mRNA_{AmiE}]}{dt} = leak_{Plux} + \frac{\kappa_{Lux}[C12]^n}{K_{mLux}^n + [C12]^n} - d[mRNA_{AmiE}]$$ <br />$$\tag{4-7}$$</p>
 +
<p>$$\frac{d[AmiE]}{dt} = \alpha [mRNA_{AmiE}]P_{Prince} - d_{AmiE}[AmiE] \tag{4-8} $$</p>
 +
 +
<p class="caption"><span style="font-weight: bold;">Eq. 4. </span> Differential Equations of Signaling Molecules</p>
 +
 +
<p class="normal_text">Equations (4-1), (4-4) and (4-7) describe the concentrations of mRNAs under the AHL inducing promoters.
 +
Thus, they comprise terms of production by leaky expressions of promoters, terms of production by Hill function dependent on the concentration of C12/C4, terms of original degradation and terms of degradation from cleavage at ACA sequences by MazF dimers.</p>
 +
<p class="normal_text">The other ODEs describe how the concentrations of materials change in individuals, on the other hand (4-3), (4-6) describe the concentrations of C4 C12AHL in the whole culture medium.</p>
 +
</li>
 +
</ul><!-- /modeling_maz_list -->
 +
</div><!-- /modeling_maz_contents -->
  
  
 
+
<div class="back_link contents">
 
+
<p class="normal_text"><a href="https://2016.igem.org/Team:Tokyo_Tech/Model#mathematical_model">Back to Model page.</a></p>
<div class="collapsable_menu_control"> MENU ▤ </div>
+
</div>
 
+
</div><!-- /modeling_maz_system -->
<ul id="accordion" class="accordion">
+
 
+
<!-- /UNTIL HERE MAZ SYSTEM -->
<li class="menu_item"> <a href="https://2016.igem.org/Team:Tokyo_Tech">HOME </a> </li>
+
 
+
 
+
<li class="menu_item"> <div class="icon plus"></div> TEAM
+
<ul class="submenu">
+
<li> <a href=" https://2016.igem.org/Team:Tokyo_Tech/Team"> Team  </a> </li>
+
<li> <a href="https://2016.igem.org/Team:Tokyo_Tech/Collaborations">★  Collaborations </a> </li>
+
                    </ul>
+
                </li>
+
 
+
<li class="menu_item"> <div class="icon plus"></div> PROJECT 
+
<ul class="submenu">
+
<li> <a href="https://2016.igem.org/Team:Tokyo_Tech/Description"> ★  Description </a></li>
+
<li> <a href="https://2016.igem.org/Team:Tokyo_Tech/Design"> ★ Design </a></li>
+
<li> <a href="https://2016.igem.org/Team:Tokyo_Tech/Experiments"> Experiments </a></li>
+
<li> <a href="https://2016.igem.org/Team:Tokyo_Tech/Proof"> ★ Proof of Concept </a></li>
+
<li> <a href="https://2016.igem.org/Team:Tokyo_Tech/Demonstrate"> ★ Demonstrate </a></li>
+
<li> <a href="https://2016.igem.org/Team:Tokyo_Tech/Results"> Results </a></li>
+
<li> <a href="https://2016.igem.org/Team:Tokyo_Tech/Notebook"> Notebook </a></li>
+
                    </ul>
+
                </li>
+
 
+
<li class="menu_item"> <div class="icon plus"></div> PARTS 
+
<ul class="submenu">
+
<li> <a href="https://2016.igem.org/Team:Tokyo_Tech/Parts">Parts </a></li>
+
<li> <a href="https://2016.igem.org/Team:Tokyo_Tech/Basic_Part"> ★ Basic Parts </a></li>
+
<li> <a href="https://2016.igem.org/Team:Tokyo_Tech/Composite_Part"> ★ Composite Parts </a></li>
+
<li> <a href="https://2016.igem.org/Team:Tokyo_Tech/Part_Collection"> ★ Part Collection </a></li>
+
                    </ul>
+
                </li>
+
 
+
 
+
<li class="menu_item"> <a href="https://2016.igem.org/Team:Tokyo_Tech/Safety"> SAFETY </a> </li>
+
 
+
 
+
<li class="menu_item"> <a href="https://2016.igem.org/Team:Tokyo_Tech/Attributions">★  ATTRIBUTIONS </a></li>
+
 
+
 
+
<li class="menu_item"> <div class="icon plus"></div> HUMAN PRACTICES
+
<ul class="submenu">
+
<li> <a href="https://2016.igem.org/Team:Tokyo_Tech/Human_Practices"> Human Practices </a></li>
+
<li> <a href="https://2016.igem.org/Team:Tokyo_Tech/HP/Silver">★ Silver </a></li>
+
<li> <a href="https://2016.igem.org/Team:Tokyo_Tech/HP/Gold">★ Gold </a></li>
+
<li> <a href="https://2016.igem.org/Team:Tokyo_Tech/Integrated_Practices"> ★ Integrated Practices </a></li>
+
<li> <a href="https://2016.igem.org/Team:Tokyo_Tech/Engagement">★ Engagement </a></li>
+
                    </ul>
+
                </li>
+
 
+
 
+
<li class="menu_item"> <div class="icon plus"></div> AWARDS
+
<ul class="submenu">
+
<li><a href="https://2016.igem.org/Team:Tokyo_Tech/Entrepreneurship"> ★ Entrepreneurship </a></li>
+
<li> <a href="https://2016.igem.org/Team:Tokyo_Tech/Hardware"> ★ Hardware </a></li>
+
<li> <a href="https://2016.igem.org/Team:Tokyo_Tech/Software">★ Software </a></li>
+
<li> <a href="https://2016.igem.org/Team:Tokyo_Tech/Measurement">★  Measurement </a></li>
+
<li> <a href="https://2016.igem.org/Team:Tokyo_Tech/Model">★ Model </a></li>
+
 
+
                    </ul>
+
                </li>
+
</ul>
+
 
+
</div>
+
-->
+
 
+
 
+
<div id="text_wrapper" class="content_wrapper">
+
 
+
<center>
+
 
+
<h1>Tokyo_Tech</h1>
+
 
+
</center>
+
 
+
<h4 id="page_name">  </h4>
+
 
+
 
+
 
+
 
+
 
+
 
+
 
+
 
+
 
+
<script>
+
 
+
// This is the jquery part of your template.  Try not modify any of this code since it makes your menu work.
+
 
+
$(document).ready(function() {
+
 
+
$("#HQ_page").attr('id','');
+
 
 
 
+
if ( wgPageName.substring( 0, 8) == "Template") {   // if the page is a template it displays the full name in a single line
+
<div id="parameter_discriptions" class="container">
$("#team_name").html( wgPageName );  
+
<div id="parameter_discription_header" class="container_header">
 +
<h1><span>Parameters</span></h1>
 +
</div><!-- /parameter_discription_header -->
 +
 +
<!-- この辺から表 -->
 +
<div id="parameter_discription_contents" class="container_contents">
 +
<table border="1" width="800px">
 +
<tbody>
 +
<tr>
 +
<th>Parameter</th>
 +
<th>Value</th>
 +
<th>Description</th>
 +
<th>Reference</th>
 +
</tr>
 +
<tr>
 +
<td>$$ g $$</td>
 +
<td>0.0123</td>
 +
<td>Growth rate of each cells</td>
 +
<td>Fitted to experimental data</td>
 +
</tr>
 +
<tr>
 +
<td>$$ P_{max} $$</td>
 +
<td>3.6</td>
 +
<td>Carrying capacity</td>
 +
<td>Fitted to experimental data</td>
 +
</tr>
 +
<tr>
 +
<td>$$ E_{DiMazF} $$</td>
 +
<td>$$ 0.462234 nM^{-1} min^{-1} $$ </td>
 +
<td>Effect of MazF dimer on growth rate of each cells</td>
 +
<td>Fitted to experimental data</td>
 +
</tr>
 +
<tr>
 +
<td>$$ k $$</td>
 +
<td>$$5 min^{-1}$$</td>
 +
<td>Transcription rate of downstream of Ptet</td>
 +
<td>Reference</td>
 +
</tr>
 +
<tr>
 +
<td>$$ leak_{Plux} $$</td>
 +
<td>$$ 2.26 min^{-1} $$</td>
 +
<td>Leakage of Plux</td>
 +
<td> Fitted to experimental data </td>
 +
</tr>
 +
<tr>
 +
<td>$$ leak_{Prhl} $$</td>
 +
<td>$$ 4.654 min^{-1} $$</td>
 +
<td>Leakage of Prhl</td>
 +
<td> Fitted to experimental data </td>
 +
</tr>
 +
<tr>
 +
<td>$$ κ_{Lux} $$</td>
 +
<td>$$ 6.984 nM^{-1} min^{-1} $$ </td>
 +
<td>Maximum transcription rate of under streams of Plux</td>
 +
<td> Fitted to experimental data </td>
 +
</tr>
 +
<tr>
 +
<td>$$ κ_{Rhl} $$</td>
 +
<td>$$ 14.95 nM^{-1} min^{-1} $$ </td>
 +
<td>Maximum transcription rate of understreams of Prhl</td>
 +
<td> Fitted to experimental data </td>
 +
</tr>
 +
<tr>
 +
<td>$$ n_{Lux} $$</td>
 +
<td> 0.76 </td>
 +
<td>Hill coefficient for Plux</td>
 +
<td> Fitted to experimental data </td>
 +
</tr>
 +
<tr>
 +
<td>$$ n_{Rhl} $$</td>
 +
<td> 5 </td>
 +
<td>Hill cofficient for Prhl</td>
 +
<td> Fitted to experimental data </td>
 +
</tr>
 +
<tr>
 +
<td>$$ K_{mLux} $$</td>
 +
<td>$$ 116.24nM $$</td>
 +
<td>Lumped parameter for the Lux system</td>
 +
<td> Fitted to experimental data </td>
 +
</tr>
 +
<tr>
 +
<td>$$ K_{mRhl} $$</td>
 +
<td>$$ 1000 nM $$</td>
 +
<td>Lumped parameter for the Rhl system</td>
 +
<td> Fitted to experimental data </td>
 +
</tr>
 +
<tr>
 +
<td>$$ F_{DiMazF} $$</td>
 +
<td> $$ 5 nM^{-1} min^{-1} $$</td>
 +
<td>Cutting rate at ACA sequences on mRNA by MazF dimers </td>
 +
<td> Estimated </td>
 +
</tr>
 +
<tr>
 +
<td>$$ f $$</td>
 +
<td> 0.299 </td>
 +
<td>The probability of distinction of ACA sequences on each mRNA</td>
 +
<td> Fitted to experimental data </td>
 +
</tr>
 +
<tr>
 +
<td>$$ f_{mRNA_{RFP}} $$</td>
 +
<td> 10 </td>
 +
<td>$$ The number of ACA sequences on mRNA_{RFP} $$</td>
 +
<td> Extraction of data </td>
 +
</tr>
 +
<tr>
 +
<td>$$ f_{mRNA_{GFP}} $$</td>
 +
<td> 23 </td>
 +
<td>$$ The number of ACA sequences on mRNA_{GFP} $$</td>
 +
<td> Extraction of data </td>
 +
</tr>
 +
<tr>
 +
<td>$$ f_{mRNA_{RhlI}} $$</td>
 +
<td> 1 </td>
 +
<td>$$ The number of ACA sequences on mRNA_{RhlI} $$</td>
 +
<td> Extraction of data </td>
 +
</tr>
 +
<tr>
 +
<td>$$ f_{mRNA_{LasI}} $$</td>
 +
<td> 10 </td>
 +
<td>$$ The number of ACA sequences on mRNA_{LasI} $$</td>
 +
<td> Extraction of data </td>
 +
</tr>
 +
<tr>
 +
<td>$$ f_{mRNA_{MazF}} $$</td>
 +
<td> 2 </td>
 +
<td>$$ The number of ACA sequences on mRNA_{MazF} $$</td>
 +
<td> Extraction of data </td>
 +
</tr>
 +
<tr>
 +
<td>$$ f_{mRNA_{MazE}} $$</td>
 +
<td> 2 </td>
 +
<td>$$ The number of ACA sequences on mRNA_{MazE} $$</td>
 +
<td> Extraction of data </td>
 +
</tr>
 +
<tr>
 +
<td>$$ α $$</td>
 +
<td> $$ 0.04 min_{-1} $$ </td>
 +
<td>Translation rate of </td>
 +
<td> Estimated </td>
 +
</tr>
 +
<tr>
 +
<td>$$ k_{DiMazF}$$</td>
 +
<td> $$ 6.82 nM_{-1} min_{-1} $$ </td>
 +
<td>Formation rate of MazF dimer </td>
 +
<td> Fitted to experimental data </td>
 +
</tr>
 +
<tr>
 +
<td>$$ k_{-Di_{MazF}}$$</td>
 +
<td> $$ 6.24 nM^{-1} min^{-1} $$ </td>
 +
<td>Formation rate of MazF dimer </td>
 +
<td> Fitted to experimental data </td>
 +
</tr>
 +
<tr>
 +
<td>$$ k_{Di_{MazE}}$$</td>
 +
<td> $$ 3.46 nM^{-1} min^{-1} $$ </td>
 +
<td>Formation rate of MazF dimer </td>
 +
<td> Fitted to experimental data  </td>
 +
</tr>
 +
<tr>
 +
<td>$$ k_{-Di_{MazE}}$$</td>
 +
<td> $$ 7.25 min^{-1} $$ </td>
 +
<td>Dissociation rate of MazF dimer </td>
 +
<td> Fitted to experimental data </td>
 +
</tr>
 +
<tr>
 +
<td>$$ k_{Hexa}$$</td>
 +
<td> $$ 4.51 nM^{-1} min^{-1} $$ </td>
 +
<td>Formation rate of Maz hexamer </td>
 +
<td> Fitted to experimental data </td>
 +
</tr>
 +
<tr>
 +
<td>$$ k_{-Hexa}$$</td>
 +
<td> $$ 4.05 min^{-1} $$ </td>
 +
<td>Dissociation rate of Maz hexamer </td>
 +
<td> Fitted to experimental data </td>
 +
</tr>
 +
<tr>
 +
<td>$$ p_{C4}$$</td>
 +
<td> $$ 0.07 min^{-1} $$ </td>
 +
<td> Production rate of C4HSL by RhlI </td>
 +
<td> Estimated </td>
 +
</tr>
 +
<tr>
 +
<td>$$ p_{C12}$$</td>
 +
<td> $$ 0.07 min^{-1} $$ </td>
 +
<td> Production rate of 3OC12HSL by LasI </td>
 +
<td> Estimated </td>
 +
</tr>
 +
<tr>
 +
<td>$$ D $$</td>
 +
<td> $$ 5 nM^{-1} min^{-1} $$ </td>
 +
<td> Decomposition rate of 3OC12HSL by AmiE </td>
 +
<td> Estimated </td>
 +
</tr>
 +
<tr>
 +
    <td>$$ d $$</td>
 +
    <td>$$ 0.2773 min^{-1} $$ </td>
 +
    <td> Degradation rate of mRNA </td>
 +
    <td> Leference </td>
 +
</td>
 +
<tr>
 +
    <td>$$ d_{RFP} $$</td>
 +
    <td>$$ 0.018 min^{-1} $$ </td>
 +
    <td> Degradation rate of RFP </td>
 +
    <td> Leference </td>
 +
</td>
 +
<tr>
 +
    <td>$$ d_{GFP} $$</td>
 +
    <td>$$ 0.04 min^{-1} $$ </td>
 +
    <td> Degradation rate of GFP </td>
 +
    <td> Leference </td>
 +
</td>
 +
<tr>
 +
    <td>$$ d_{RhlI} $$</td>
 +
    <td>$$ 0.0167 min^{-1} $$ </td>
 +
    <td> Degradation rate of RhlI </td>
 +
    <td> Leference </td>
 +
</td>
 +
<tr>
 +
    <td>$$ d_{LasI} $$</td>
 +
    <td>$$ 0.0167 min^{-1} $$ </td>
 +
    <td> Degradation rate of LasI </td>
 +
    <td> Leference </td>
 +
</td>
 +
<tr>
 +
    <td>$$ d_{MazF} $$</td>
 +
    <td>$$ 0.7 min^{-1} $$ </td>
 +
    <td> Degradation rate of MazF </td>
 +
    <td> Fitted to experimental data </td>
 +
</td>
 +
<tr>
 +
    <td>$$ d_{DiMazF} $$</td>
 +
    <td>$$ 0.17 min^{-1} $$ </td>
 +
    <td> Degradation rate of MazF dimer </td>
 +
    <td> Fitted to experimental data </td>
 +
</td>
 +
<tr>
 +
    <td>$$ d_{MazE} $$</td>
 +
    <td>$$ 0.55 min^{-1} $$ </td>
 +
    <td> Degradation rate of MazE </td>
 +
    <td> Fitted to experimental data </td>
 +
</td>
 +
<tr>
 +
    <td>$$ d_{DiMazE} $$</td>
 +
    <td>$$ 0.416 min^{-1} $$ </td>
 +
    <td> Degradation rate of MazE dimer </td>
 +
    <td> Fitted to experimental data </td>
 +
</td>
 +
<tr>
 +
    <td>$$ d_{Hexa} $$</td>
 +
    <td>$$ 0.511 min^{-1} $$ </td>
 +
    <td> Degradation rate of Maz hexameter </td>
 +
    <td> Fitted to experimental data </td>
 +
</td>
 +
<tr>
 +
    <td>$$ d_{C4} $$</td>
 +
    <td>$$ 0.000222 min^{-1} $$ </td>
 +
    <td> Degradation rate of C4HSL </td>
 +
    <td> Literature </td>
 +
</td>
 +
<tr>
 +
    <td>$$ d_{C12} $$</td>
 +
    <td>$$ 0.004 min^{-1} $$ </td>
 +
    <td> Degradation rate of 3OC12HSL </td>
 +
    <td> Literature </td>
 +
</td>
 +
<tr>
 +
    <td>$$ d_{AmiE} $$</td>
 +
    <td>$$ 0.001 min^{-1} $$ </td>
 +
    <td> Degradation rate of AmiE </td>
 +
    <td> Assumption </td>
 +
</td>
 +
</tbody>
 +
</table>
 +
</div><!-- /parameter_discription_contents -->
 +
 +
<!-- この辺まで表 -->
 +
 +
</div><!-- /parameter_discriptions -->
 +
 +
<div id="references" class="container container_bottom">
 +
<div id="references_header" class="container_header">
 +
<h2><span>References</span></h2>
 +
</div><!-- /references_header -->
 +
<div id="references_contents" class="container_contents">
 +
<p class="normal_text">[1] <a href="ここにリンク"></a></p>
 +
<p class="normal_text"> [2]  <a href="ここにリンク"></a>.</p>
 +
</div><!-- /references_contents -->
 +
</div><!-- /references -->
 +
</div><!-- /main_contents -->
 +
<script type="text/javascript">
 +
function show(idName){
 +
var elem = document.getElementById(idName);
 +
if(elem.className === 'on'){
 +
elem.className = 'off';
 +
var elem2 = document.getElementsByClassName('showHidden');
 +
elem2[0].textContent = 'Expressions';
 +
} else {
 +
elem.className = 'on';
 +
var elem2 = document.getElementsByClassName('showHidden');
 +
elem2[0].textContent = 'Hide';
 +
}
 
}
 
}
 
+
</script>
else if (  ( (wgPageName.match(/\//g) || []).length ) == 0 ) {  // if it is the home page , just print the team's name
+
</body>
$("#team_name").html( wgPageName.substring( 5, wgPageName.length ) );
+
}
+
 
+
else {
+
// this adds the team's name as an h1
+
$("#team_name").html( wgPageName.substring( 5 , wgPageName.indexOf("/")  ) );
+
 
+
// this adds the page's title as an h4
+
$("#page_name").html (    ( wgPageName.substring( wgPageName.indexOf("/") + 1, wgPageName.length ) ).replace( /\/|_/g , " ")  );
+
}
+
 
+
 
+
 
+
 
+
$('#accordion').find('.menu_item').click(function(){
+
 
+
//Expand or collapse this panel
+
submenu = $(this).find('.submenu');
+
submenu.toggle();
+
 
+
icon = $(this).find('.icon');
+
 
+
if ( !$( submenu ).is(':visible') ) {
+
icon.removeClass("less").addClass("plus");
+
}
+
else {
+
icon.removeClass("plus").addClass("less");
+
}
+
 
+
//Hide the other panels
+
$(".submenu").not(submenu).hide();
+
$(".icon").not(icon).removeClass("less").addClass("plus");
+
});
+
 
+
 
+
$(".collapsable_menu_control").click(function() {
+
$(".menu_item").toggle();
+
});
+
 
+
$( window ).resize(function() {
+
$(".menu_item").show();
+
});
+
 
+
 
+
});
+
 
+
 
+
 
+
 
+
</script>
+
 
+
 
+
 
+
 
+
 
+
<div class="column full_size" >
+
<div id="ProjectDiscriptionTitle" align="center">
+
<h2> Project Description</h2>
+
</div><!-- /ProjectDiscriptionTitle -->
+
<p>Our Team Tokyo_Tech is currently working on the following four projects:</p>
+
<p>Ⅰ. Representing fashion show and Othello with the interaction among <span style="font-style: italic;">E. coli</span>.
+
</p>
+
<p>Ⅱ. Engineering the <span style="font-style: italic;">E. coli</span> which can secrete and absorb protein.
+
</p>
+
<p>Ⅲ. Engineering the <span style="font-style: italic;">E. coli</span> which can increase the efficiency to allocate phosphorus fertilizer and synthesize a variety of plant hormones.
+
</p>
+
<p>Ⅳ. Representing the famous fairy tale, Snow White with the interaction among <span style="font-style: italic;">E. coli</span>.
+
</p>
+
<p>Ⅰ. We have developed the mechanism about coating the surface of <span style="font-style: italic;">E. coli</span> , and run the fashion show of <span style="font-style: italic;">E. coli</span> with various kinds of fluorescence. It is expected that the development of proteins which bind with specific antibody or cell targeted would be applied to determining the location of the target, establishing the system to control the motion of the target and also microbe sensor for the specific substance. This system will be applied in various fields such as Biology and Medicine. In our opinion, the control of multiple motions among <span style="font-style: italic;">E. coli</span> will be used as a device of microbe sensor by combinating <span style="font-style: italic;">E. coli</span> and hardware.
+
</p>
+
<p>Ⅱ. We aim to develop the system of <span style="font-style: italic;">E. coli</span> which can secrete a large amount of target protein.  because in order to synthesize and collect target protein, we have to break down the whole <span style="font-style: italic;">E. coli</span>, It‘s a time-consuming process to get the purified target protein. However, if the system secreting the target protein efficiently can be established, we’ll be able to produce the target protein without killing <span style="font-style: italic;">E. coli</span> and reduce the cost of production.
+
</p>
+
<p>Ⅲ. We are trying to produce phosphoric acid from phosphate in <span style="font-style: italic;">E. coli</span> which is hardly soluble and not absorbed by plants. Through this process,it will be able to increase the efficiency of phosphorus fertilizer’s allocation and to alleviate the depletion of phosphate rock. In addition, we aim to grow vegetables in a short term by synthesizing plant hormone by <span style="font-style: italic;">E. coli</span>.
+
</p>
+
<p>Ⅳ.  We plan to apply AHL-degrading enzyme and toxin used for representing Snow White by <span style="font-style: italic;">E. coli</span> in the practice. AHL-degrading enzyme can be applied to preventing the generation of biofilm. In our opinion, the death of malignant cells can be induced by inducing the expression of toxin gene. According to the mathematical modeling about competition and balance of bacteria, we are still studying about the analysis of the competition among bacteria populations <span style="font-style: italic;">in vivo</span>, river and soil.
+
</p>
+
</div>
+
 
+
 
+
</p>
+
<!--
+
NewPP limit report
+
CPU time usage: 0.006 seconds
+
Real time usage: 0.006 seconds
+
Preprocessor visited node count: 9/1000000
+
Preprocessor generated node count: 44/1000000
+
Post‐expand include size: 41/2097152 bytes
+
Template argument size: 0/2097152 bytes
+
Highest expansion depth: 2/40
+
Expensive parser function count: 0/100
+
-->
+
 
+
<!-- Saved in parser cache with key 2016_igem_org:pcache:idhash:1013-0!*!*!*!*!*!* and timestamp 20160626103829 and revision id 21437
+
-->
+
</div>             <div class="visualClear"></div>
+
            </div>
+
    </div>
+
 
+
        </div>
+
 
+
        <!-- Side Menubar -->
+
        <div id="sideMenu">
+
            <a href="https://2016.igem.org">
+
                <div id="home_logo" >
+
                <img src="https://static.igem.org/mediawiki/2016/b/bf/HQ_menu_logo.jpg">
+
                </div>
+
            </a>
+
 
+
            <div style="clear:both; height:5px;"></div>
+
 
+
            <div id="menuDisplay"></div>  <!- Menu will be loaded here ->
+
        </div>
+
 
+
        <!-- Pop_Why Div is definded here -->
+
        <div class="pop_why_cover"></div>
+
 
+
        <div class="pop_why_box" >
+
            <div class="pop_close">× </div>
+
            <div class="pop_why_content"><h3> Loading ... </h3></div>
+
        </div>
+
 
+
    </div>
+
 
</html>
 
</html>
 
 
 
{{Tokyo_Tech/Footer}}
 

Revision as of 03:57, 17 October 2016

Modeling Development

To simulate the cell-cell communication system, we developed an ordinary differential equation model. The following sentences describe how the equations were developed. And in this page we expound not only on the model with the Maz system, which we selected as the best TA system for our project, but also on the one with the Yaf system, which we chose as an alternative.

Fig. 4-2-1. Maz System Gene Circuit

Differencial Equations

Snow White

\begin{equation} \frac{d[mRNA_{RFP}]}{dt} = k - d[mRNA_{RFP}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{RFP}}})[mRNA_{RFP}][DiMazF] \end{equation} \begin{equation} \frac{d[mRNA_{RhlI}]}{dt} = leak_{Plux} + \frac{\kappa_{Lux}[C12]^{n_{Lux}}}{K_{mLux}^{n_{Lux}} + [C12]^{n_{Lux}}} - d[mRNA_{RhlI}] - F_{DiMazF}f[mRNA_{RhlI}][DiMazF] \end{equation} \begin{equation} \frac{d[RFP]}{dt} = \alpha [mRNA_{RFP}] - d_{RFP}[RFP] \end{equation} \begin{equation} \frac{d[RhlI]}{dt} = \alpha [mRNA_{RhlI}] - d_{RhlI}[RhlI] \end{equation} \begin{equation} \frac{d[C4]}{dt} = p_{C4}[RhlI]P_{Snow White} - d_{C4}[C4] \end{equation} \begin{equation} \frac{d[mRNA_{MazF}]}{dt} = leak_{Plux} + \frac{\kappa_{Lux}[C12]^{n_{Lux}}}{K_{mLux}^{n_{Lux}}+ [C12]^{n_{Lux}}} \\        - d[mRNA_{MazF}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazF}}})[mRNA_{MazF}][DiMazF] \end{equation} \begin{equation} \frac{d[mRNA_{MazE}]}{dt} = k - d[mRNA_{MazE}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazE}}})[mRNA_{MazE}][DiMazF] \end{equation} \begin{equation} \frac{d[MazF]}{dt} = \alpha [mRNA_{MazF}] - 2k_{DiMazF}[MazF] + 2k_{-DiMazF}[DiMazF] - d_{MazF}[MazF] \end{equation} \begin{equation} \frac{d[DiMazF]}{dt} = k_{DiMazF}[MazF] - k_{-DiMazF}[DiMazF] - 2k_{Hexa}[DiMazE][DiMazF]^2 \\        + 2k_{-Hexa}[MazHexamer] - d_{DiMazF}[DiMazF] \end{equation} \begin{equation} \frac{d[MazE]}{dt} = \alpha [mRNA_{MazE}] - 2k_{DiMazE}[MazE] + 2k_{-DiMazE}[DiMazE] - d_{MazE}[MazE] \end{equation} \begin{equation} \frac{d[DiMazE]}{dt} = k_{DiMazE}[MazE] - k_{-DiMazE}[DiMazE] - k_{Hexa}[DiMazE][DiMazF]^2 \\        + k_{-Hexa}[MazHexamer] - d_{DiMazE}[DiMazE] \end{equation} \begin{equation} \frac{d[MazHexa]}{dt} = k_{Hexa}[DiMazE][DiMazF]^2 - k_{-Hexa}[MazHexa] - d_{Hexa}[MazHexa] \end{equation} \begin{equation} \frac{dP_{Snow White}}{dt} = g \frac{E_{DiMazF}}{E_{DiMazF}+[DiMazF]}\left(1- \frac{P_{Snow White}+P_{Queen}+P_{Prince}}{P_{max}} \right) P_{Snow White} \end{equation}

Queen

\begin{equation} \frac{d[mRNA_{GFP}]}{dt} = k - d[mRNA_{GFP}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{GFP}}})[mRNA_{GFP}][DiMazF] \end{equation} \begin{equation} \frac{d[mRNA_{LasI}]}{dt} = leak_{Prhl} + \frac{\kappa_{Rhl}[C4]^{n_{Rhl}}}{K_{mRhl}^{n_{Rhl}} + [C4]^{n_{Rhl}}} \\        - d[mRNA_{LasI}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{LasI}}})[mRNA_{LasI}][DiMazF] \end{equation} \begin{equation} \frac{d[GFP]}{dt} = \alpha [mRNA_{GFP}] - d_{GFP}[GFP] \end{equation} \begin{equation} \frac{d[LasI]}{dt} = \alpha [mRNA_{LasI}] - d_{LasI}[LasI] \end{equation} \begin{equation} \frac{d[C12]}{dt} = p_{C12}[LasI]P_{Queen} - d_{C12}[C12] - D[C12][AmiE] \end{equation} \begin{equation} \frac{d[mRNA_{MazF}]}{dt} = leak_{Plux} + \frac{\kappa_{Rhl}[C4]^{n_{Rhl}}}{K_{mRhl}^{n_{Rhl}} + [C4]^{n_{Rhl}}} \\        - d[mRNA_{MazF}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazF}}})[mRNA_{MazF}][DiMazF] \end{equation} \begin{equation} \frac{d[mRNA_{MazE}]}{dt} = k - d[mRNA_{MazE}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazE}}})[mRNA_{MazE}][DiMazF] \end{equation} \begin{equation} \frac{d[MazF]}{dt} = \alpha [mRNA_{MazF}] - 2k_{DiMazF}[MazF] + 2k_{-DiMazF}[DiMazF] - d_{MazF}[MazF] \end{equation} \begin{equation} \frac{d[DiMazF]}{dt} = k_{DiMazF}[MazF] - k_{-DiMazF}[DiMazF] - 2k_{Hexa}[DiMazE][DiMazF]^2 \\        + 2k_{-Hexa}[MazHexamer] - d_{DiMazF}[DiMazF] \end{equation} \begin{equation} \frac{d[MazE]}{dt} = \alpha [mRNA_{MazE}] - 2k_{DiMazE}[MazE] + 2k_{-DiMazE}[DiMazE] - d_{MazE}[MazE] \end{equation} \begin{equation} \frac{d[DiMazE]}{dt} = k_{DiMazE}[MazE] - k_{-DiMazE}[DiMazE] - k_{Hexa}[DiMazE][DiMazF]^2 \\        + k_{-Hexa}[MazHexamer] - d_{DiMazE}[DiMazE] \end{equation} \begin{equation} \frac{d[MazHexa]}{dt} = k_{Hexa}[DiMazE][DiMazF]^2 - k_{-Hexa}[MazHexa] - d_{Hexa}[MazHexa] \end{equation} \begin{equation} \frac{dP_{Queen}}{dt} = g \frac{E_{DiMazF}}{E_{DiMazF}+[DiMazF]}\left(1- \frac{P_{Snow White}+P_{Queen}+P_{Prince}}{P_{max}}\right) P_{Queen}\\ \end{equation}

Prince

\begin{equation} \frac{d[mRNA_{AmiE}]}{dt} = leak_{Plux} + \frac{\kappa_{Lux}[C12]^n}{K_{mLux}^n + [C12]^n} - d[mRNA_{AmiE}] \end{equation} \begin{equation} \frac{d[AmiE]}{dt} = \alpha [mRNA_{AmiE}]P_{Prince} - d_{AmiE}[AmiE] \end{equation} \begin{equation} \frac{dP_{Prince}}{dt} = g\left(1- \frac{P_{Snow White}+P_{Queen}+P_{Prince}}{P_{max}}\right) P_{Prince} \end{equation}

Explanation about Parameters

Parameter Description
$$g$$ Growth rate of each cells
$$P_{max}$$ Carrying capacity
$$E_{DiMazF}$$ Effect of MazF dimer on growth rate
$$k$$ Transcription rate of downstream of Pcon
$$leak_{Plux}$$ Leakage of Plux
$$leak_{Prhl}$$ Leakage of Prhl
$$\kappa_{Lux}$$ Maximum transcription rate of mRNA under Plux
$$\kappa_{Rhl}$$ Maximum transcription rate of downstream of Prhl
$$n_{Lux}$$ Hill coefficient for Plux
$$n_{Rhl}$$ Hill coefficient for Prhl
$$K_{mLux}$$ Lumped paremeter for the Lux System
$$K_{mRhl}$$ Lumped paremeter for the Rhl System
$$F_{DiMazF}$$ Cutting rate at ACA sequences on mRNA by MazF dimer
$$f$$ The probability of distinction of ACA sequencess in each mRNA
$$f_{mRNA_{RFP}}$$ The number of ACA sequences in \(mRNA_{RFP}\)
$$f_{mRNA_{GFP}}$$ The number of ACA sequences in \(mRNA_{GFP}\)
$$f_{mRNA_{RhlI}}$$ The number of ACA sequences in \(mRNA_{RhlI}\) 
$$f_{mRNA_{LasI}}$$ The number of ACA sequences in \(mRNA_{LasI}\)
$$f_{mRNA_{MazF}}$$ The number of ACA sequences in \(mRNA_{MazF}\) 
$$f_{mRNA_{MazE}}$$ The number of ACA sequences in \(mRNA_{MazE}\) 
$$\alpha$$ Translation rate of Protein
$$k_{DiMazF}$$ Formation rate of MazF dimer
$$k_{-DiMazF}$$ Dissociation rate of MazF dimer
$$k_{DiMazE}$$ Formation rate of MazE dimer
$$k_{-DiMazE}$$ Dissociation rate of MazE dimer
$$k_{Hexa}$$ Formation rate of Maz hexamer
$$k_{-Hexa}$$ Dissociation rate of Maz hexamer
$$p_{C4}$$ Production rate of C4HSL by RhlI
$$p_{C12}$$ Production rate of 3OC12HSL by LuxI
$$D$$ Decomposition rate of 3OC12HSL by AmiE
$$d$$ Degradation rate of mRNA
$$d_{RFP}$$ Degradation rate of RFP
$$d_{GFP}$$ Degradation rate of GFP
$$d_{RhlI}$$ Degradation rate of RhlI
$$d_{LasI}$$ Degradation rate of LasI
$$d_{MazF}$$ Degradation rate of MazF
$$d_{DiMazF}$$ Degradation rate of MazF dimer
$$d_{MazE}$$ Degradation rate of MazE
$$d_{DiMazE}$$ Degradation rate of MazE dimer
$$d_{Hexa}$$ Degradation rate of Maz Hexamer
$$d_{C4}$$ Degradation rate of C4HSL
$$d_{C12}$$ Degradation rate of 3OC12HSL
$$d_{AmiE}$$ Degradation rate of AmiE

Expressions

  • 1. Cell Population

    $$ \frac{dP_{Snow White}}{dt} = g \frac{E_{DiMazF}}{E_{DiMazF}+[DiMazF]}\left(1- \frac{P_{Snow White}+P_{Queen}+P_{Prince}}{P_{max}} \right) P_{Snow White} $$
    $$ \tag{1-1} $$

    $$ \frac{dP_{Queen}}{dt} = g \frac{E_{DiMazF}}{E_{DiMazF}+[DiMazF]}\left(1- \frac{P_{Snow White}+P_{Queen}+P_{Prince}}{P_{max}}\right) P_{Queen}$$
    $$ \tag{1-2} $$

    $$ \frac{dP_{Prince}}{dt} = g\left(1- \frac{P_{Snow White}+P_{Queen}+P_{Prince}}{P_{max}}\right) P_{Prince} \tag{1-3} $$

    Eq.1. Differential Equation of Cell Population

    The equations above describe how cells grow in the culture. Equations (1-1), (1-2) and (1-3) describe the populations of Snow White, the Queen and the Prince. (1-3) is described by the logistic growth equation, but (1-1) and (1-2) are represented by the growth inhibition by MazF dimers. This factor is designed so that its value is small when the concentration of MazF dimers is low, and its value converges to 1 when the concentration of MazF dimers is high.

  • 2. Maz System

    • 2.1. Expression of Maz System

      After translation, MazE and MazF each form an stable dimer which can be activated to exert its function.


      Two MazE dimers sandwich the MazF dimer, forming MazF2-MazE2-MazF2 heterohexamers and suppressing the toxicity of the MazF dimers.

      Fig. 4-2-2. Reaction of Maz System

      The mRNAs of Snow White and the Queen decrease by their original degradation and by the cleavage at ACA sequences by MazF dimers.

      Applying mass action kinetic laws, we obtain the following set of differential equations.

      Snow White

      $$ \frac{d[mRNA_{MazF}]}{dt} = leak_{Plux} + \frac{\kappa_{Lux}[C12]^{n_{Lux}}}{K_{mLux}^{n_{Lux}}+ [C12]^{n_{Lux}}} \\        - d[mRNA_{MazF}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazF}}})[mRNA_{MazF}][DiMazF] $$
      $$ \tag{2-1} $$

      $$ \frac{d[MazF]}{dt} = \alpha [mRNA_{MazF}] - 2k_{DiMazF}[MazF] + 2k_{-DiMazF}[DiMazF] - d_{MazF}[MazF] $$
      $$\tag{2-2}$$

      $$ \frac{d[DiMazF]}{dt} = k_{DiMazF}[MazF] - k_{-DiMazF}[DiMazF] - 2k_{Hexa}[DiMazE][DiMazF]^2 \\        + 2k_{-Hexa}[MazHexamer] - d_{DiMazF}[DiMazF] $$
      $$ \tag{2-3} $$

      $$ \frac{d[mRNA_{MazE}]}{dt} = k - d[mRNA_{MazE}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazE}}})[mRNA_{MazE}][DiMazF] $$
      $$ \tag{2-4} $$

      $$\frac{d[MazE]}{dt} = \alpha [mRNA_{MazE}] - 2k_{DiMazE}[MazE] + 2k_{-DiMazE}[DiMazE] - d_{MazE}[MazE]$$
      $$\tag{2-5}$$

      $$ \frac{d[DiMazE]}{dt} = k_{DiMazE}}[MazE] - k_{-DiMazE}[DiMazE] - k_{Hexa}[DiMazE][DiMazF]^2 \\        + k_{-Hexa}[MazHexamer] - d_{DiMazE}[DiMazE]$$
      $$\tag{2-6} $$

      $$\frac{d[MazHexa]}{dt} = k_{Hexa}[DiMazE][DiMazF]^2 - k_{-Hexa}[MazHexa] - d_{Hexa}[MazHexa]$$
      $$ \tag{2-7}$$

      Queen

      $$ \frac{d[mRNA_{MazF}]}{dt} = leak_{Plux} + \frac{\kappa_{Lux}[C12]^{n_{Lux}}}{K_{mLux}^{n_{Lux}}+ [C12]^{n_{Lux}}} \\        - d[mRNA_{MazF}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazF}}})[mRNA_{MazF}][DiMazF] $$
      $$ \tag{2-8} $$

      $$ \frac{d[MazF]}{dt} = \alpha [mRNA_{MazF}] - 2k_{DiMazF}[MazF] + 2k_{-DiMazF}[DiMazF] - d_{MazF}[MazF] $$
      $$\tag{2-9}$$

      $$ \frac{d[DiMazF]}{dt} = k_{DiMazF}[MazF] - k_{-DiMazF}[DiMazF] - 2k_{Hexa}[DiMazE][DiMazF]^2 \\        + 2k_{-Hexa}[MazHexamer] - d_{DiMazF}[DiMazF] $$
      $$ \tag{2-10} $$

      $$ \frac{d[mRNA_{MazE}]}{dt} = k - d[mRNA_{MazE}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazE}}})[mRNA_{MazE}][DiMazF] $$
      $$ \tag{2-11} $$

      $$\frac{d[MazE]}{dt} = \alpha [mRNA_{MazE}] - 2k_{DiMazE}[MazE] + 2k_{-DiMazE}[DiMazE] - d_{MazE}[MazE]$$
      $$\tag{2-12}$$

      $$ \frac{d[DiMazE]}{dt} = k_{DiMazE}[MazE] - k_{-DiMazE}[DiMazE] - k_{Hexa}[DiMazE][DiMazF]^2 \\        + k_{-Hexa}[MazHexamer] - d_{DiMazE}[DiMazE]$$
      $$\tag{2-13} $$

      $$\frac{d[MazHexa]}{dt} = k_{Hexa}[DiMazE][DiMazF]^2 - k_{-Hexa}[MazHexa] - d_{Hexa}[MazHexa]$$
      $$ \tag{2-14}$$

      Eq. 2. Differential Equations of Maz System

      Equations (2-1) and (2-8) describe the concentration of mRNAs under the AHL inducing promoters. Thus, they comprise terms of production by leaky expressions of promoters, terms of production by Hill function dependent on the concentration of C12/C4, terms of original degradation and terms of degradation from cleavage at ACA sequences by MazF dimers. Since Equations (2-2), (2-3), (2-5), (2-6), (2-7), (2-9), (2-10), (2-12), (2-13) and (2-14) describe the concentrations of complexes, mainly they comprise terms of production and terms of binding and dissociation.

    • 2.2. Cleavage by MazF dimers

      MazF dimers recognize and cleave ACAs in mRNAs, thus acting as Toxin.

      We estimated the rate of recognitions of ACA sequences by MazF dimers at \(1-(1-f)^n\), where the number of ACA sequences in mRNA.

      Then, we expressed the rate of degradation by MazF dimers in \(F(1-(1-f)^{f_{mRNA}})\) and obtain the following set of differential equations.

      Snow White

      $$\frac{d[mRNA_{RFP}]}{dt} = k - d[mRNA_{RFP}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{RFP}}})[mRNA_{RFP}][DiMazF] $$
      $$ \tag{3-1} $$

      $$ \frac{d[mRNA_{RhlI}]}{dt} = leak_{Plux} + \frac{\kappa_{Lux}[C12]^{n_{Lux}}}{K_{mLux}^{n_{Lux}} + [C12]^{n_{Lux}}} - d[mRNA_{RhlI}] - F_{DiMazF}$$
      $$ \tag{3-2} $$

      $$\frac{d[mRNA_{MazF}]}{dt} = leak_{Plux} + \frac{\kappa_{Lux}[C12]^{n_{Lux}}}{K_{mLux}^{n_{Lux}}+ [C12]^{n_{Lux}}} \\        - d[mRNA_{MazF}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazF}}})[mRNA_{MazF}][DiMazF] $$
      $$\tag{3-3}$$

      $$\frac{d[mRNA_{MazE}]}{dt} = k - d[mRNA_{MazE}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazE}}})[mRNA_{MazE}][DiMazF]$$
      $$ \tag{3-4} $$

      Queen

      $$\frac{d[mRNA_{GFP}]}{dt} = k - d[mRNA_{GFP}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{GFP}}})[mRNA_{GFP}][DiMazF] $$
      $$ \tag{3-5} %%

      $$ \frac{d[mRNA_{LasI}]}{dt} = leak_{Prhl} + \frac{\kappa_{Rhl}[C4]^{n_{Rhl}}}{K_{mRhl}^{n_{Rhl}} + [C4]^{n_{Rhl}}} \\        - d[mRNA_{LasI}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{LasI}}})[mRNA_{LasI}][DiMazF] $$
      $$ \tag{3-6} $$

      $$\frac{d[mRNA_{MazF}]}{dt} = leak_{Plux} + \frac{\kappa_{Lux}[C12]^{n_{Lux}}}{K_{mLux}^{n_{Lux}}+ [C12]^{n_{Lux}}} \\        - d[mRNA_{MazF}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazF}}})[mRNA_{MazF}][DiMazF] $$
      $$\tag{3-7}$$

      $$\frac{d[mRNA_{MazE}]}{dt} = k - d[mRNA_{MazE}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazE}}})[mRNA_{MazE}][DiMazF]$$
      $$ \tag{3-8} $$

      Eq. 3. Differential Equations of mRNAs

      The equations above comprise terms of production, terms of original degradation and terms of degradation from cleavage at ACA sequences by MazF dimers.

  • 3. Signal Molecules

    Fig. 4-2-3. Reaction of Signal Molecules

    Snow White expresses RhlI under Plux induced by C12, the Queen expresses LasI under Prhl induced by C4 and the Prince expresses AmiE under Plux induced by C12.

    The mRNAs of Snow White and the Queen decrease from original degradation and the cleavage at ACA sequences by MazF dimers. On the other hand, those of the Prince don’t have any MazF gene so they decrease from only original degradation.

    After translation, C12AHL and C4 are enzymatically synthesized by LasI and RhlI from some substrates respectively. For simplicity, we assumed that the amount of substrates is sufficient so that the C12AHL / C4 synthesis rate per cell is estimated to be proportional to the LasI and RhlI concentrations.

    C4 decreases from original degradation meanwhile C12AHL decreases from both original degradation and degradation by AmiE, which Prince products.

    Applying mass action kinetic laws, we obtain the following set of differential equations.

    $$ \frac{d[mRNA_{RhlI}]}{dt} = leak_{Plux} + \frac{\kappa_{Lux}[C12]^{n_{Lux}}}{K_{mLux}^{n_{Lux}} + [C12]^{n_{Lux}}} - d[mRNA_{RhlI}] - F_{DiMazF}f[mRNA_{RhlI}][DiMazF] $$
    $$\tag{4-1}$$

    $$\frac{d[RhlI]}{dt} = \alpha [mRNA_{RhlI}] - d_{RhlI}[RhlI] \tag{4-2}$$

    $$ \frac{d[Rhl AHL]}{dt} = p_{Rhl}[RhlI]P_{Snowwhite} - d_{RhlAHL}[RhlAHL] \tag{4-3} $$

    $$ \frac{d[mRNA_{LasI}]}{dt} = leak_{Prhl} + \frac{\kappa_{Rhl}[C4]^{n_{Rhl}}}{K_{mRhl}^{n_{Rhl}} + [C4]^{n_{Rhl}}} - d[mRNA_{LasI}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{LasI}}})[mRNA_{LasI}][DiMazF] $$
    $$\tag{4-4}$$

    $$\frac{d[LasI]}{dt} = \alpha [mRNA_{LasI}] - d_{LasI}[LasI] \tag{4-5}$$

    $$\frac{d[LasAHL]}{dt} = p_{Las}[LasI]P_{Stepmother} - d_{LasAHL}[LasAHL] - D[LasAHL][AmiE]$$
    $$\tag{4-6}$$

    $$\frac{d[mRNA_{AmiE}]}{dt} = leak_{Plux} + \frac{\kappa_{Lux}[C12]^n}{K_{mLux}^n + [C12]^n} - d[mRNA_{AmiE}]$$
    $$\tag{4-7}$$

    $$\frac{d[AmiE]}{dt} = \alpha [mRNA_{AmiE}]P_{Prince} - d_{AmiE}[AmiE] \tag{4-8} $$

    Eq. 4. Differential Equations of Signaling Molecules

    Equations (4-1), (4-4) and (4-7) describe the concentrations of mRNAs under the AHL inducing promoters. Thus, they comprise terms of production by leaky expressions of promoters, terms of production by Hill function dependent on the concentration of C12/C4, terms of original degradation and terms of degradation from cleavage at ACA sequences by MazF dimers.

    The other ODEs describe how the concentrations of materials change in individuals, on the other hand (4-3), (4-6) describe the concentrations of C4 C12AHL in the whole culture medium.

Parameters

Parameter Value Description Reference
$$ g $$ 0.0123 Growth rate of each cells Fitted to experimental data
$$ P_{max} $$ 3.6 Carrying capacity Fitted to experimental data
$$ E_{DiMazF} $$ $$ 0.462234 nM^{-1} min^{-1} $$ Effect of MazF dimer on growth rate of each cells Fitted to experimental data
$$ k $$ $$5 min^{-1}$$ Transcription rate of downstream of Ptet Reference
$$ leak_{Plux} $$ $$ 2.26 min^{-1} $$ Leakage of Plux Fitted to experimental data
$$ leak_{Prhl} $$ $$ 4.654 min^{-1} $$ Leakage of Prhl Fitted to experimental data
$$ κ_{Lux} $$ $$ 6.984 nM^{-1} min^{-1} $$ Maximum transcription rate of under streams of Plux Fitted to experimental data
$$ κ_{Rhl} $$ $$ 14.95 nM^{-1} min^{-1} $$ Maximum transcription rate of understreams of Prhl Fitted to experimental data
$$ n_{Lux} $$ 0.76 Hill coefficient for Plux Fitted to experimental data
$$ n_{Rhl} $$ 5 Hill cofficient for Prhl Fitted to experimental data
$$ K_{mLux} $$ $$ 116.24nM $$ Lumped parameter for the Lux system Fitted to experimental data
$$ K_{mRhl} $$ $$ 1000 nM $$ Lumped parameter for the Rhl system Fitted to experimental data
$$ F_{DiMazF} $$ $$ 5 nM^{-1} min^{-1} $$ Cutting rate at ACA sequences on mRNA by MazF dimers Estimated
$$ f $$ 0.299 The probability of distinction of ACA sequences on each mRNA Fitted to experimental data
$$ f_{mRNA_{RFP}} $$ 10 $$ The number of ACA sequences on mRNA_{RFP} $$ Extraction of data
$$ f_{mRNA_{GFP}} $$ 23 $$ The number of ACA sequences on mRNA_{GFP} $$ Extraction of data
$$ f_{mRNA_{RhlI}} $$ 1 $$ The number of ACA sequences on mRNA_{RhlI} $$ Extraction of data
$$ f_{mRNA_{LasI}} $$ 10 $$ The number of ACA sequences on mRNA_{LasI} $$ Extraction of data
$$ f_{mRNA_{MazF}} $$ 2 $$ The number of ACA sequences on mRNA_{MazF} $$ Extraction of data
$$ f_{mRNA_{MazE}} $$ 2 $$ The number of ACA sequences on mRNA_{MazE} $$ Extraction of data
$$ α $$ $$ 0.04 min_{-1} $$ Translation rate of Estimated
$$ k_{DiMazF}$$ $$ 6.82 nM_{-1} min_{-1} $$ Formation rate of MazF dimer Fitted to experimental data
$$ k_{-Di_{MazF}}$$ $$ 6.24 nM^{-1} min^{-1} $$ Formation rate of MazF dimer Fitted to experimental data
$$ k_{Di_{MazE}}$$ $$ 3.46 nM^{-1} min^{-1} $$ Formation rate of MazF dimer Fitted to experimental data
$$ k_{-Di_{MazE}}$$ $$ 7.25 min^{-1} $$ Dissociation rate of MazF dimer Fitted to experimental data
$$ k_{Hexa}$$ $$ 4.51 nM^{-1} min^{-1} $$ Formation rate of Maz hexamer Fitted to experimental data
$$ k_{-Hexa}$$ $$ 4.05 min^{-1} $$ Dissociation rate of Maz hexamer Fitted to experimental data
$$ p_{C4}$$ $$ 0.07 min^{-1} $$ Production rate of C4HSL by RhlI Estimated
$$ p_{C12}$$ $$ 0.07 min^{-1} $$ Production rate of 3OC12HSL by LasI Estimated
$$ D $$ $$ 5 nM^{-1} min^{-1} $$ Decomposition rate of 3OC12HSL by AmiE Estimated
$$ d $$ $$ 0.2773 min^{-1} $$ Degradation rate of mRNA Leference
$$ d_{RFP} $$ $$ 0.018 min^{-1} $$ Degradation rate of RFP Leference
$$ d_{GFP} $$ $$ 0.04 min^{-1} $$ Degradation rate of GFP Leference
$$ d_{RhlI} $$ $$ 0.0167 min^{-1} $$ Degradation rate of RhlI Leference
$$ d_{LasI} $$ $$ 0.0167 min^{-1} $$ Degradation rate of LasI Leference
$$ d_{MazF} $$ $$ 0.7 min^{-1} $$ Degradation rate of MazF Fitted to experimental data
$$ d_{DiMazF} $$ $$ 0.17 min^{-1} $$ Degradation rate of MazF dimer Fitted to experimental data
$$ d_{MazE} $$ $$ 0.55 min^{-1} $$ Degradation rate of MazE Fitted to experimental data
$$ d_{DiMazE} $$ $$ 0.416 min^{-1} $$ Degradation rate of MazE dimer Fitted to experimental data
$$ d_{Hexa} $$ $$ 0.511 min^{-1} $$ Degradation rate of Maz hexameter Fitted to experimental data
$$ d_{C4} $$ $$ 0.000222 min^{-1} $$ Degradation rate of C4HSL Literature
$$ d_{C12} $$ $$ 0.004 min^{-1} $$ Degradation rate of 3OC12HSL Literature
$$ d_{AmiE} $$ $$ 0.001 min^{-1} $$ Degradation rate of AmiE Assumption

References

[1]

[2] .