Line 31: | Line 31: | ||
<div class="caption"> | <div class="caption"> | ||
<div class="col-md-5 col-sm-5 col-xs-12 title"> <!-- the approximate max number of characters ~ 400 --> <!-- EDIT --> | <div class="col-md-5 col-sm-5 col-xs-12 title"> <!-- the approximate max number of characters ~ 400 --> <!-- EDIT --> | ||
− | <h1>Genome Scale Modelling<p class="lead">A genome scale model (GSM) is a computational representation of the metabolic network, containing information about the metabolites, reactions, genes | + | <h1>Genome Scale Modelling<p class="lead">What medium should I use to grow my microorganism? Which genes should I mutate to make my organism produce more beta-carotene? Let genome scale modelling help you design your dream organism. A genome scale model (GSM) is a computational representation of the metabolic network, containing information about the metabolites, reactions, genes and more. Using a GSM of Y.Lip, we explored how Y.Lip grows on different substrates. We compared it to S.cer to see the pros and cons of each organism. We also found out what genes need to be manipulated to optimize beta-carotene production. |
</p></h1> | </p></h1> | ||
</div> | </div> |
Revision as of 05:18, 17 October 2016
Section 1
Quote Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer posuere erat a ante.
Someone famous in Source Title
iGEM info Modeling
Mathematical models and computer simulations provide a great way to describe the function and operation of BioBrick Parts and Devices. Synthetic Biology is an engineering discipline, and part of engineering is simulation and modeling to determine the behavior of your design before you build it. Designing and simulating can be iterated many times in a computer before moving to the lab. This award is for teams who build a model of their system and use it to inform system design or simulate expected behavior in conjunction with experiments in the wetlab.
Inspiration
Here are a few examples from previous teams:
Has ut facer debitis, quo eu agam purto. In eum justo aeterno. Sea ut atqui efficiantur, mandamus deseruisse at est, erat natum cum eu. Quot numquam in vel. Salutatus euripidis moderatius qui ex, eu tempor volumus vituperatoribus has, ius ea ullum facer corrumpit.
Introduction
Why? to explore how to grow y.lip efficiently. To optimize b-carotene produciton by amplifying or deleting genes.
This is done by using genome-scale modelling,
And we found that...
FBA
Paragraph
Paragraph
model validation
Paragraph
Paragraph
phpp
Paragraph
Paragraph
Adding B_carotene reactions
Paragraph
Paragraph
what genes to amp? FVA and differential FVA
Paragraph
Paragraph
what genes to amp FSEOF
Paragraph
Paragraph
what genes to ko? optgene
Paragraph
Paragraph
lmoma and room results
Paragraph
Paragraph
Results
Has ut facer debitis, quo eu agam purto. In eum justo aeterno. Sea ut atqui efficiantur, mandamus deseruisse at est, erat natum cum eu. Quot numquam in vel. Salutatus euripidis moderatius qui ex, eu tempor volumus vituperatoribus has, ius ea ullum facer corrumpit.
phpp on y.lip and s.cer on diff. substrates
Paragraph
Paragraph
what genes to amp and ko
Paragraph
Paragraph
so whta does this means?
Paragraph
Paragraph
Section 4
Has ut facer debitis, quo eu agam purto. In eum justo aeterno. Sea ut atqui efficiantur, mandamus deseruisse at est, erat natum cum eu. Quot numquam in vel. Salutatus euripidis moderatius qui ex, eu tempor volumus vituperatoribus has, ius ea ullum facer corrumpit.
Section 5
Has ut facer debitis, quo eu agam purto. In eum justo aeterno. Sea ut atqui efficiantur, mandamus deseruisse at est, erat natum cum eu. Quot numquam in vel. Salutatus euripidis moderatius qui ex, eu tempor volumus vituperatoribus has, ius ea ullum facer corrumpit.