Difference between revisions of "Team:Aix-Marseille/Collaborations"

(Equations)
(Equations)
Line 29: Line 29:
 
<p>To creat our model, we had to determine some equations.</p>
 
<p>To creat our model, we had to determine some equations.</p>
 
<div lang="latex">
 
<div lang="latex">
\frac{\partial}{\partial t} W_\mathbf{z} (\mathbf{z},t) + \nabla_\mathbf{z}\cdot[(\beta\cdot\overline{\mathbf{R}}(\mathbf{z},c)W_\mathbf{z}(\mathbf{z},t))] = 2 \int \sigma (\mathbf{z',c}) p(\mathbf{z,z',c}) W_{\mathbf{Z}}(\mathbf{z'},t)\mathrm{d}v' - (D+\sigma (\mathbf{z,c})) W_{\mathbf{Z}}(\mathbf{z},t) (1)
+
\frac{\partial}{\partial t} W_\mathbf{z} (\mathbf{z},t) + \nabla_\mathbf{z}\cdot[(\beta\cdot\overline{\mathbf{R}}(\mathbf{z},c)W_\mathbf{z}(\mathbf{z},t))] = 2 \int \sigma (\mathbf{z',c}) p(\mathbf{z,z',c}) W_{\mathbf{Z}}(\mathbf{z'},t)\mathrm{d}v' - (D+\sigma (\mathbf{z,c})) W_{\mathbf{Z}}(\mathbf{z},t) (1)
  
\frac{d\mathbf{c}}{dt} = D(\mathbf{c_f} - \mathbf{c} ) + \mathbf{\gamma}\cdotp \int  \bar{\mathbf{R}}(\mathbf{z,c}) W_{\mathbf{Z}}(\mathbf{z},t)\mathrm{d}v (2)
+
\frac{d\mathbf{c}}{dt} = D(\mathbf{c_f} - \mathbf{c} ) + \mathbf{\gamma}\cdotp \int  \bar{\mathbf{R}}(\mathbf{z,c}) W_{\mathbf{Z}}(\mathbf{z},t)\mathrm{d}v (2)
  
 
</div>
 
</div>

Revision as of 11:17, 17 October 2016