Difference between revisions of "Team:Aix-Marseille/Collaborations"

(Equations)
(Equations)
Line 126: Line 126:
 
Where alpha is the growth yield in <div lang="latex">g/l/cell</div>. The remaining functions and parameters in equations 1 and 2 are the division rate <div lang="latex">\sigma (\mathbf{z,c})</div> and the partitioning 2 function <div lang="latex">p(\mathbf{z,z',c})</div>. There is less consensus in the litterature for an at least empirically appropriate form for these equations. To remain simple we propose:<br/><br/>
 
Where alpha is the growth yield in <div lang="latex">g/l/cell</div>. The remaining functions and parameters in equations 1 and 2 are the division rate <div lang="latex">\sigma (\mathbf{z,c})</div> and the partitioning 2 function <div lang="latex">p(\mathbf{z,z',c})</div>. There is less consensus in the litterature for an at least empirically appropriate form for these equations. To remain simple we propose:<br/><br/>
  
<div lang="latex">\sigma (\mathbf{z,c}) = \sigma \times H[2.0] = 0  & \text{if } z_0 < 2.0 \\ \sigma (\mathbf{z,c}) = \sigma \times H[2.0] = \sigma & \text{if } z_0 \geq 2.0</div>(6)<br/><br/>
+
<div lang="latex">\sigma (\mathbf{z,c}) = \sigma \times H[2.0] = 0  if z_0 < 2.0 \\ \sigma (\mathbf{z,c}) = \sigma \times H[2.0] = \sigma if z_0 \geq 2.0</div>(6)<br/><br/>
  
 
Here we assume that there is a fixed rate of division <div lang="latex">\sigma</div> once cells are big enough to divide (<div lang="latex">H[]</div> is the Heaviside function).
 
Here we assume that there is a fixed rate of division <div lang="latex">\sigma</div> once cells are big enough to divide (<div lang="latex">H[]</div> is the Heaviside function).
  
 
<div lang="latex">p(\mathbf{z,z',c}) = p(z_0,z'_0) \times p(z_1,z'_1) \times p(z_2,z'_2)</div> (7)<br/><br/>
 
<div lang="latex">p(\mathbf{z,z',c}) = p(z_0,z'_0) \times p(z_1,z'_1) \times p(z_2,z'_2)</div> (7)<br/><br/>
<div lang="latex">p(z_0,z'_0) = \delta_{z_0,\frac{z'_0}{2}} = 1 & \text{if } z_0 = z'_0/2.0 \\
+
<div lang="latex">p(z_0,z'_0) = \delta_{z_0,\frac{z'_0}{2}} = 1 if z_0 = z'_0/2.0 \\
p(z_0,z'_0) = \delta_{z_0,\frac{z'_0}{2}} = 0 & \text{if } z_0 \ne z'_0/2.0.</div> (7)<br/><br/>
+
p(z_0,z'_0) = \delta_{z_0,\frac{z'_0}{2}} = 0 if z_0 \ne z'_0/2.0.</div> (8)<br/><br/>
<div lang="latex">p(z_1,z'_1) = 0.5^{z'_1} \begin{pmatrix} z_1 \\ z'_1 \\ \end{pmatrix} = 0.5^{z'_1} \frac{z'_1 !}{(z'_1-z_1)! z_1 !}</div>(8)<br/><br/>
+
<div lang="latex">p(z_1,z'_1) = 0.5^{z'_1} \begin{pmatrix} z_1 \\ z'_1 \\ \end{pmatrix} = 0.5^{z'_1} \frac{z'_1 !}{(z'_1-z_1)! z_1 !}</div>(9)<br/><br/>
  
 
In these equations we assume that the partitioning of the three internal state variables are independant.
 
In these equations we assume that the partitioning of the three internal state variables are independant.

Revision as of 15:49, 17 October 2016