Difference between revisions of "Team:Slovenia/CoiledCoilInteraction"

(Created page with "{{Slovenia}} <html> <head> <title>Model Logic</title> <link rel="stylesheet" href="//2016.igem.org/Team:Slovenia/libraries/semantic-min-css?action=raw&ctype=...")
 
Line 1: Line 1:
 +
<!DOCTYPE html>
 
{{Slovenia}}
 
{{Slovenia}}
 
<html>
 
<html>
Line 7: Line 8:
 
     <script type="text/javascript"
 
     <script type="text/javascript"
 
             src="//2016.igem.org/Team:Slovenia/libraries/semantic-min-js?action=raw&ctype=text/javascript"></script>
 
             src="//2016.igem.org/Team:Slovenia/libraries/semantic-min-js?action=raw&ctype=text/javascript"></script>
     <link rel="stylesheet" type="text/css" href="//2016.igem.org/Team:Slovenia/libraries/custom-css?action=raw&ctype=text/css">
+
     <link rel="stylesheet" type="text/css"
     <script type="text/javascript" src="//2016.igem.org/Team:Slovenia/libraries/custom-js?action=raw&ctype=text/javascript"></script>
+
          href="//2016.igem.org/Team:Slovenia/libraries/custom-css?action=raw&ctype=text/css">
 +
     <script type="text/javascript"
 +
            src="//2016.igem.org/Team:Slovenia/libraries/custom-js?action=raw&ctype=text/javascript"></script>
 
     <script type="text/javascript"
 
     <script type="text/javascript"
 
             src="//2016.igem.org/Team:Slovenia/libraries/zitator-js?action=raw&ctype=text/javascript"></script>
 
             src="//2016.igem.org/Team:Slovenia/libraries/zitator-js?action=raw&ctype=text/javascript"></script>
 
     <script type="text/javascript"
 
     <script type="text/javascript"
 
             src="https://2016.igem.org/Team:Slovenia/libraries/bibtexparse-js?action=raw&ctype=text/javascript"></script>
 
             src="https://2016.igem.org/Team:Slovenia/libraries/bibtexparse-js?action=raw&ctype=text/javascript"></script>
<!-- MathJax (LaTeX for the web) -->
+
    <!-- MathJax (LaTeX for the web) -->
 
     <script type="text/x-mathjax-config">
 
     <script type="text/x-mathjax-config">
 
         MathJax.Hub.Config({
 
         MathJax.Hub.Config({
 
             tex2jax: {
 
             tex2jax: {
                 inlineMath: [['$', '$'], ['\\(', '\\)']]
+
                 inlineMath: [['$', '$'], ['\\(', '\\)']],
 +
                processEscapes: true
 
             },
 
             },
            jax: ["input/TeX","output/SVG"],
 
 
             TeX: {
 
             TeX: {
                extensions: ["mhchem.js"],
+
                 equationNumbers: {autoNumber: "all" }
                 equationNumbers: {autoNumber: "all" },
+
             }
                Macros: {
+
                  goodbreak: '\\mmlToken{mo}[linebreak="goodbreak"]{}',
+
                  badbreak: ['\\mmlToken{mo}[linebreak="badbreak"]{#1}',1],
+
                  nobreak: ['\\mmlToken{mo}[linebreak="nobreak"]{#1}',1],
+
                  invisibletimes: ['\\mmlToken{mo}{\u2062}']
+
                }
+
             },
+
            CommonHTML: { linebreaks: { automatic: true, width: "75% container" } },
+
            "HTML-CSS": { linebreaks: { automatic: true, width: "68% container" }},
+
            SVG: { linebreaks: { automatic: true, width: "200% container" }}
+
 
         });
 
         });
 
     </script>
 
     </script>
<script type="text/javascript" async
+
    <script type="text/javascript" async
 
             src="//2016.igem.org/common/MathJax-2.5-latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
 
             src="//2016.igem.org/common/MathJax-2.5-latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
 
     </script>
 
     </script>
 
</head>
 
</head>
 
<body>
 
<body>
+
 
+
 
<div id="example">
+
<div id="example">
<div class="pusher">
+
    <div class="pusher">
<div class="full height">
+
        <div class="full height">
<div class="banana">
+
            <div class="banana">
<a href = "//2016.igem.org/Team:Slovenia">
+
                <a href="//2016.igem.org/Team:Slovenia">
<img class="ui medium sticky image" src="//2016.igem.org/wiki/images/d/d1/T--Slovenia--logo.png">
+
                    <img class="ui medium sticky image" src="//2016.igem.org/wiki/images/d/d1/T--Slovenia--logo.png">
</a>
+
                </a>
<div class="ui vertical sticky text menu">
+
                <div class="ui vertical sticky text menu">
<a class="item" href="#intro" style="margin-left: 10%">
+
                    <a class="item" href="#intro" style="margin-left: 10%">
<i class="selected radio icon"></i>
+
                        <i class="selected radio icon"></i>
<b>Project</b>
+
                        <b>Project</b>
</a>
+
                    </a>
<a class="item" href="#achievements" style="margin-left: 10%">
+
                    <a class="item" href="#achievements" style="margin-left: 10%">
<i class="selected radio icon"></i>
+
                        <i class="selected radio icon"></i>
<b>Achievements</b>
+
                        <b>Achievements</b>
</a>
+
                    </a>
<a class="item" href="#requirements" style="margin-left: 10%">
+
                    <a class="item" href="#requirements" style="margin-left: 10%">
<i class="selected radio icon"></i>
+
                        <i class="selected radio icon"></i>
<b>Medal requirements</b>
+
                        <b>Medal requirements</b>
</a>
+
                    </a>
<a class="item" href="idea">
+
                    <a class="item" href="idea">
<i class="chevron circle right icon"></i>
+
                        <i class="chevron circle right icon"></i>
<b>Idea</b>
+
                        <b>Idea</b>
</a>
+
                    </a>
+
                </div>
</div>
+
            </div>
+
            <div class="article" id="context">
</div>
+
                <!-- menu goes here -->
<div class="article" id="context">
+
                <!-- content goes here -->
<!-- menu goes here -->
+
                <div class="main ui citing justified container">
<!-- content goes here -->
+
                    <h2>Coiled Coil interaction model</h2>
<div class="main ui citing justified container">
+
                    <p>Logic operations in biological systems have been tested with several approaches
+
                        <x-ref></x-ref>
</div>
+
                        . Our project
</div>
+
                        relies on the reconstitution of split protein promoted by coiled coil (CC) dimerization. The
</div>
+
                        interaction between CC peptides can be finely tuned
</div>
+
                        <x-ref></x-ref>
</div>
+
                        , thereby CCs offers a flexible and
 +
                        versatile platform in terms of designing logic operation in vivo. With the purpose of
 +
                        understanding the relation that underlies the interaction between coiled coil peptides and
 +
                        therefore using them in logic gates, we designed the following model (
 +
                        <ref>5.4.1.</ref>
 +
                        ). Our system is based on constructs that have been characterized in mammalian cells in the
 +
                        context of <a href="https://2016.igem.org/Team:Slovenia/Protease_signaling/Logic">logic function
 +
                            design</a>. Two orthogonal CC segment, A and b, fused together in on chain can bind each
 +
                        other and form a stable CC pair. This complex exists in combination with the peptide B, which
 +
                        can also bind the peptide A and has a different affinity from the peptide b. The linker that
 +
                        connects A and b can be cleaved by a generic protease (e.g. TEV), this irreversible reaction
 +
                        shift the equilibrium towards a state in which all of the three peptides are free in solution
 +
                        and therefore compete for binding. In our experiments, a similar system as the generic coils A
 +
                        and B was fused to the <a
 +
                                href="https://2016.igem.org/Team:Slovenia/Protease_signaling/Reporters">split reporter
 +
                            firefly luciferase</a>.
 +
                    </p>
 +
 
 +
                    <div align="left">
 +
                        <figure data-ref="5.4.1.">
 +
                            <img class="ui medium image"
 +
                                src="https://static.igem.org/mediawiki/2016/9/98/T--Slovenia--5.4.1.png">
 +
                            <figcaption><b> Scheme representing the CC interaction model </b><br/> The two state system
 +
                                is considered at inducible by activity of TEV protease and signal both before and after
 +
                                cleavage is represented as reconstitution on split firefly luciferase reporter.
 +
                            </figcaption>
 +
                        </figure>
 +
                    </div>
 +
                    <p>The relationship between the signal before and after cleavage by proteases is represented by the
 +
                        difference [AB] - [AB-b]. In order to understand the optimal combination of dissociation
 +
                        constant required to obtain a good signal we solved two systems of equations set up considering
 +
                        the two state of the reaction scheme (“Before cleavage and “After cleavage”) as separate phases
 +
                        of the reaction and additionally, considering cleavage as an irreversible and complete
 +
                        reaction.</p>
 +
                    <p>Given values for total concentrations and Kd (from 10<sup>-9</sup> to 10<sup>-3</sup> M) the
 +
                        equations, for the
 +
                        reaction constants \eqref{1.1-2} - \eqref{2.1-2} and for mass conservation \eqref{1.3-4} - \eqref{2.3-5}, were solved for the
 +
                        species at equilibrium.</p>
 +
                    Before cleavage
 +
                    \begin{align}
 +
                    Kd_x &= \frac{[A-b]}{[Axb]} \label{1.1-2}\\
 +
                    Kd_B &= \frac{[A-b] * [B]}{[AB - b]} \\
 +
                    c_B &= [B] + [AB-b]\\
 +
                    c_A-b &= [A-b]+[Axb]+[AB-b] \label{2.1-2}
 +
                    \end{align}
 +
                    After cleavage
 +
                    \begin{align}
 +
                    Kd_b &= \frac{[A] * [b]}{[Ab]}  \label{1.3-4}\\
 +
                    Kd_B &= \frac{[A] * [B]}{[AB]} \\
 +
                    c_A &= [A]+[AB]+[Ab]\\
 +
                    c_B &= [B] +[AB]\\
 +
                    c_b &= [b] + [Ab] \label{2.3-5}
 +
                    \end{align}
 +
 
 +
                    >external text
 +
                    The two systems are connected by the relation between the dissociation constants $Kd_b$ and $Kd_x$,
 +
                    \begin{equation}
 +
                    Kd_x = Kd_b * 4 * 10^{-3} M^{-1}
 +
                    \end{equation}
 +
                    This relation approximates the higher affinity between the coils A and b when they are covalently
 +
                    linked by a short peptide (as in the system “Before cleavage”)
 +
                    <x-ref></x-ref>
 +
                    .
 +
                    <p>The results have been plotted varying the Kd for the interaction of A with both B and b, against
 +
                        the difference [AB] - [AB-b], where [AB] is considered the signal after cleavage and [AB-b] the
 +
                        signal before cleavage (leakage). The system revealed that in order to obtain a high difference
 +
                        between signal and leakage a high affinity of the coil B for the coil A (low $Kd_B$) is
 +
                        required,
 +
                        while on the other hand an excessive destabilization of the autoinhibitory coil b (high $Kd_b$)
 +
                        would prevent the signal to be visible (
 +
                        <ref>5.4.2.</ref>
 +
                        ).
 +
                    </p>
 +
                    <div align="left">
 +
                        <figure data-ref="5.4.2.">
 +
                            <img class="ui medium image"
 +
                                src="https://static.igem.org/mediawiki/2016/7/76/T--Slovenia--5.4.2.png">
 +
                            <figcaption><b> Difference between [AB] and [AB-b] depending on the ratio of Kd
 +
                                values.</b><br/> The plots display the difference (M) between the signal before after
 +
                                and the proteolytic cleavage (left) and the concentration of the species responsible for
 +
                                leakage [AB-b] (right) in a range of different Kd values.
 +
                            </figcaption>
 +
                        </figure>
 +
                    </div>
 +
 
 +
                    <p>This relationship suggested to try using a different version of the coiled coils available in the
 +
                        toolset already used by the <a href="https://2009.igem.org/Team:Slovenia">Slovenian iGEM 2009
 +
                            team</a>
 +
                        <x-ref></x-ref>
 +
                        .In order to
 +
                        obtain a detectable signal for <a href="https://2016.igem.org/Team:Slovenia/Protease_signaling/Logic">logic operation in vivo </a we decided
 +
                        to use an inhibitory coiled coil, which would be displaced by the second coiled coil with higher
 +
                        affinity, only once is cleaved off its partner ($ Kd_B > Kd_b $). In doing so we selected P3 as
 +
                        B and
 +
                        P3mS as b, these two coiled coil peptides present only few substitutions and the higher
 +
                        solubility of P3mS (b), which presents Gln and Ser instead of Ala in b and c position of the
 +
                        heptads, would favour the dissociation. We also tried differently destabilized versions of P3
 +
                        and it turned out that, as in the forehead described model, an excessive destabilization
 +
                        (obtained by substituting a and d positions with Ala) leads to a small difference of the signal
 +
                        before and after cleavage. Using a slightly destabilized coiled coil (P3mS-2A), which presents
 +
                        only 2 alanines in the second heptad, the signal after cleavage reached its maximum of 16 folds.
 +
                        (MISSING Link to Figure 4.12.9.)
 +
                    </p>
 +
 
 +
                    <h2 id="ref-title" class="ui centered dividing header">References</h2>
 +
                    <div class="citing" id="references"></div>
 +
                </div>
 +
            </div>
 +
        </div>
 +
    </div>
 +
</div>
 
</body>
 
</body>
 
</html>
 
</html>

Revision as of 17:47, 17 October 2016

<!DOCTYPE html> Model Logic

Coiled Coil interaction model

Logic operations in biological systems have been tested with several approaches . Our project relies on the reconstitution of split protein promoted by coiled coil (CC) dimerization. The interaction between CC peptides can be finely tuned , thereby CCs offers a flexible and versatile platform in terms of designing logic operation in vivo. With the purpose of understanding the relation that underlies the interaction between coiled coil peptides and therefore using them in logic gates, we designed the following model ( 5.4.1. ). Our system is based on constructs that have been characterized in mammalian cells in the context of logic function design. Two orthogonal CC segment, A and b, fused together in on chain can bind each other and form a stable CC pair. This complex exists in combination with the peptide B, which can also bind the peptide A and has a different affinity from the peptide b. The linker that connects A and b can be cleaved by a generic protease (e.g. TEV), this irreversible reaction shift the equilibrium towards a state in which all of the three peptides are free in solution and therefore compete for binding. In our experiments, a similar system as the generic coils A and B was fused to the split reporter firefly luciferase.

Scheme representing the CC interaction model
The two state system is considered at inducible by activity of TEV protease and signal both before and after cleavage is represented as reconstitution on split firefly luciferase reporter.

The relationship between the signal before and after cleavage by proteases is represented by the difference [AB] - [AB-b]. In order to understand the optimal combination of dissociation constant required to obtain a good signal we solved two systems of equations set up considering the two state of the reaction scheme (“Before cleavage and “After cleavage”) as separate phases of the reaction and additionally, considering cleavage as an irreversible and complete reaction.

Given values for total concentrations and Kd (from 10-9 to 10-3 M) the equations, for the reaction constants \eqref{1.1-2} - \eqref{2.1-2} and for mass conservation \eqref{1.3-4} - \eqref{2.3-5}, were solved for the species at equilibrium.

Before cleavage \begin{align} Kd_x &= \frac{[A-b]}{[Axb]} \label{1.1-2}\\ Kd_B &= \frac{[A-b] * [B]}{[AB - b]} \\ c_B &= [B] + [AB-b]\\ c_A-b &= [A-b]+[Axb]+[AB-b] \label{2.1-2} \end{align} After cleavage \begin{align} Kd_b &= \frac{[A] * [b]}{[Ab]} \label{1.3-4}\\ Kd_B &= \frac{[A] * [B]}{[AB]} \\ c_A &= [A]+[AB]+[Ab]\\ c_B &= [B] +[AB]\\ c_b &= [b] + [Ab] \label{2.3-5} \end{align} >external text The two systems are connected by the relation between the dissociation constants $Kd_b$ and $Kd_x$, \begin{equation} Kd_x = Kd_b * 4 * 10^{-3} M^{-1} \end{equation} This relation approximates the higher affinity between the coils A and b when they are covalently linked by a short peptide (as in the system “Before cleavage”) .

The results have been plotted varying the Kd for the interaction of A with both B and b, against the difference [AB] - [AB-b], where [AB] is considered the signal after cleavage and [AB-b] the signal before cleavage (leakage). The system revealed that in order to obtain a high difference between signal and leakage a high affinity of the coil B for the coil A (low $Kd_B$) is required, while on the other hand an excessive destabilization of the autoinhibitory coil b (high $Kd_b$) would prevent the signal to be visible ( 5.4.2. ).

Difference between [AB] and [AB-b] depending on the ratio of Kd values.
The plots display the difference (M) between the signal before after and the proteolytic cleavage (left) and the concentration of the species responsible for leakage [AB-b] (right) in a range of different Kd values.

This relationship suggested to try using a different version of the coiled coils available in the toolset already used by the Slovenian iGEM 2009 team .In order to obtain a detectable signal for logic operation in vivo Kd_b $). In doing so we selected P3 as B and P3mS as b, these two coiled coil peptides present only few substitutions and the higher solubility of P3mS (b), which presents Gln and Ser instead of Ala in b and c position of the heptads, would favour the dissociation. We also tried differently destabilized versions of P3 and it turned out that, as in the forehead described model, an excessive destabilization (obtained by substituting a and d positions with Ala) leads to a small difference of the signal before and after cleavage. Using a slightly destabilized coiled coil (P3mS-2A), which presents only 2 alanines in the second heptad, the signal after cleavage reached its maximum of 16 folds. (MISSING Link to Figure 4.12.9.)

References