Difference between revisions of "Team:Slovenia/ModelLogic"

Line 80: Line 80:
 
                             the context of our
 
                             the context of our
 
                             iGEM
 
                             iGEM
                             project, one the purpose was to create, tune and regulate novel pathways in living cells
+
                             project, one of the challenges was to create, tune and regulate novel pathways in living cells
 
                             using a
 
                             using a
 
                             fast-relay system.
 
                             fast-relay system.
Line 94: Line 94:
 
                             system in cells. Designed logic gates based on
 
                             system in cells. Designed logic gates based on
 
                             protein-protein interaction are
 
                             protein-protein interaction are
                             expected to have a shorter time delay compared to their analogues based on genetic
+
                             expected to have a shorter time delay compared to their analogues based on transcription activation
                            regulatory
+
                            networks
+
 
                             <x-ref>Gaber:2014, Kiani:2014</x-ref>
 
                             <x-ref>Gaber:2014, Kiani:2014</x-ref>
 
                             .
 
                             .
Line 111: Line 109:
 
                             imposes some limitations with respect to phosphorylation. However for many applications fast
 
                             imposes some limitations with respect to phosphorylation. However for many applications fast
 
                             activation is most
 
                             activation is most
                             important, while the time to reset the system in the resting state is not that
+
                             important, while the time to reset the system in the resting state is of secondary importance.</p>
                            important.</p>
+
  
 
                         <p>Our protein-based system is designed in such a way that it works through coiled coil
 
                         <p>Our protein-based system is designed in such a way that it works through coiled coil
Line 167: Line 164:
  
 
                         <p>
 
                         <p>
                             For applications that require fast response (e.g. protein secretion), which are the purpose
+
                             For applications that require fast response (<i>e.g.</i> protein secretion), which are the purpose
 
                             of
 
                             of
 
                             our attempt, only
 
                             our attempt, only
Line 183: Line 180:
 
                         </p>
 
                         </p>
 
                         <p>
 
                         <p>
                             Since the dynamics of both functions in subgroup e) is trivial, i.e. output is a constant,
+
                             Since the dynamics of both functions in subgroup e) is trivial, <i>i.e.</i> output is a constant,
 
                             their
 
                             their
 
                             modelling is
 
                             modelling is
Line 190: Line 187:
 
                             was
 
                             was
 
                             established and
 
                             established and
                             analysed. We selected the following functions $f_1(x_1, x_2) = x_1$ from subgroup a),
+
                             analyzed. We selected the following functions $f_1(x_1, x_2) = x_1$ from subgroup a),
 
                             $f_2(x_1,
 
                             $f_2(x_1,
 
                             x_2) = \neg(x_1
 
                             x_2) = \neg(x_1
Line 290: Line 287:
 
                     </div>
 
                     </div>
 
<div>
 
<div>
                     <h3><span id="model" class="section"> &nbsp; </span>Deterministic modeling</h3>
+
                     <h3><span id="model" class="section"> &nbsp; </span>Deterministic modelling</h3>
 
                     <div class="ui segment">
 
                     <div class="ui segment">
 
                         We have established the following ordinary differential equations (ODEs) based model:
 
                         We have established the following ordinary differential equations (ODEs) based model:
Line 542: Line 539:
 
                             .
 
                             .
 
                             They confirm our
 
                             They confirm our
                             assumption that all four types of logic functions offer short delay compared to their
+
                             assumption that all four types of logic functions offer shorter delay compared to their
 
                             equivalents based on
 
                             equivalents based on
 
                             genetic
 
                             genetic
Line 615: Line 612:
 
                             Our system also allows us to shorten the lifetime of the output signal without significantly
 
                             Our system also allows us to shorten the lifetime of the output signal without significantly
 
                             reducing its
 
                             reducing its
                             concentrations, by adding degradation tags to the output protein. The high output times
+
                             concentrations by adding degradation tags to the output protein. The high output times
 
                             achieved
 
                             achieved
 
                             can even be
 
                             can even be

Revision as of 15:51, 18 October 2016

Model Logic

  IN PROGRESS žIGA (ZANALAŠČ eSTERA)Modelling logic gates

Engineering and designing biological circuits constitute a central core of synthetic biology. In the context of our iGEM project, one of the challenges was to create, tune and regulate novel pathways in living cells using a fast-relay system. The toolset of orthogonal proteases that we developed worked as input for logic function in mammalian cells. Therefore, here we propose schemes for implementation of all 16 two input binary logic functions based on a protein-protein interaction (coiled coil) and proteolysis system in cells. Designed logic gates based on protein-protein interaction are expected to have a shorter time delay compared to their analogues based on transcription activation Gaber:2014, Kiani:2014 .

The main post-translational modification on which signaling and information processing systems are based is protein phosphorylation, which enables reversibility and fast response. Proteolysis is on the other hand irreversible, which imposes some limitations with respect to phosphorylation. However for many applications fast activation is most important, while the time to reset the system in the resting state is of secondary importance.

Our protein-based system is designed in such a way that it works through coiled coil interactions, where each coiled coil in the system is either free or bound to its partner depending on the proteolytic activity. Furthermore, the signal output is represented by reconstitution of a split protein (i.e. luciferase or protease), which is fused separately to different coiled coil segments. To prove the feasibility of this design, we simulated the system's behavior using deterministic modelling. The simulations were run in Wolfram Mathematica, using xCellerator's xlr8r libraries.

The designed binary logic gates can be divided into 5 subgroups, based on the position of the protease cleavage sites:

  • a) cleavage site between coiled-coils: conjunction, disjunction and both projection functions;
  • b) cleavage site between the coiled-coil and split protease: logical NAND, logical NOR and both negations;
  • c) cleavage sites between coiled-coils as well as between the coiled-coil and split protease in the same construct: material implication and converse implication;
  • d) cleavage sites between coiled-coils as well as between the coiled-coil and split protease in different constructs: exclusive disjunction, logical biconditional, material nonimplication and converse nonimplication;
  • e) no cleavage sites: tautology and contradiction.

For applications that require fast response (e.g. protein secretion), which are the purpose of our attempt, only falsity preserving gates are appropriate, as biological systems usually require fast activation and not fast deactivation. The following functions correspond to the desired condition: both projection functions, conjunction, disjunction, exclusive disjunction, material nonimplication, converse nonimplication and true.

Since the dynamics of both functions in subgroup e) is trivial, i.e. output is a constant, their modelling is omitted. We selected a single function from the other four subgroups, for which a mathematical model was established and analyzed. We selected the following functions $f_1(x_1, x_2) = x_1$ from subgroup a), $f_2(x_1, x_2) = \neg(x_1 \vee x_2)$ from b), $f_3(x_1, x_2) = x_2 \Rightarrow x_1$ from c) and $f_4(x_1, x_2) = \neg(x_1 \Rightarrow x_2)$ from d).

Inducible proteases were assumed as the two input variables for each function. The logical values true and false were in all the cases presented with high and low amounts of output proteins or input proteases, respectively. Where the output signal is presented with several different proteins, the sum of their concentrations was observed. The schemes of the assumed reactions included in the implementation of described logical functions are represented in fig:scheme_buffer , fig:scheme_nor , fig:schemes_imply and fig:schemes_nimply . All of them ignore the leakage due to the binding of the coiled-coils before cleavage, which could be solved by setting the building elements with appropriate parameters as demonstrated in the experimental section on the CC-based logic design.

Scheme of the modelled function $f_1$.

The output is represented with the emission of light induced by reconstitution of the split firefly luciferase reporter.

Scheme of the modelled function $f_2$.

The output is represented with the emission of light induced by reconstitution of the split firefly luciferase reporter.

Scheme of the modelled function $f_3$.

The output is represented with the emission of light induced by reconstitution of the split firefly luciferase reporter.

Scheme of the modelled function $f_4$.

The output is represented with the emission of light induced by reconstitution of the split firefly luciferase reporter.

  Deterministic modelling

We have established the following ordinary differential equations (ODEs) based model:

Projection function $f_1$

\begin{align} v'(t) =& \alpha_2 - \delta_1 * v(t) - \sigma_1 * v(t) * u(t) * l(t) + \sigma_2 * p_1(t), \\ u'(t) =& \alpha_2 - \delta_1 * u(t) - \sigma_1 * v(t) * u(t) * l(t) + \sigma_2 * p_1'(t), \\ g'(t) =& \alpha_1- \delta_1 * g(t) - \tau * g(t) * p_1(t), \\ g_1'(t) =& -\delta_1 * g_1(t) + \gamma_2 * g_1g_2(t) + \beta_2 * g_1i(t) - \gamma_1 * g_1(t) * g_2(t) - \beta_1 * g_1(t) * i(t), \\ g_1g_2'(t) =& -\gamma_2 * g_1g_2(t) + \gamma_1 * g_1(t) * g_2(t) + \tau * g(t) * p_1(t), \\ g_1i'(t) =& -\delta_1 * g_1i(t) - \beta_2 * g_1i(t) + \beta_1 * g_1(t) * i(t), \\ g_2'(t) =& \gamma_2 * g_1g_2(t) - \delta_1 * g_2(t) - \gamma_1 * g_1(t) * g_2(t), \\ i'(t) =& \alpha_1+ \beta_2 * g_1i(t) - \delta_1 * i(t) - \beta_1 * g_1(t) * i(t),\\ p_1'(t) =& \sigma_1 * v(t) * u(t) * l(t) - \sigma_2 * p_1(t) \end{align}

Logical NOR $f_2$

\begin{align} c'(t) =& \alpha_1- \delta_1 * c(t) + \beta_2 * cd(t) - \beta_1 * c(t) * d(t) - \tau * c(t) * p_1(t), \\ c_1'(t) =& -\delta_1 * c_1(t) + \tau * c(t) * p_1(t) + \tau * cd(t) * p_1(t), \\ c_2'(t) =& -\delta_1 * c_2(t) + \tau * c(t) * p_1(t), \\ c_2d'(t) =& \tau * cd(t) * p_1(t), \\ cd'(t) =& -\delta_1 * cd(t) - \beta_2 * cd(t) + \beta_1 * c(t) * d(t) - \tau * cd(t) * p_1(t) - \tau * cd(t) * p_2(t), \\ cd_2'(t) =& \tau * cd(t) * p_2(t), \\ v'(t) =& \alpha_2 - \delta_1 * v(t) - \sigma_1 * v(t) * u(t) * l_1(t) + \sigma_2 * p_1(t), \\ w'(t) =& \alpha_2 - \delta_1 * w(t) - \sigma_1 * w(t) * z(t) * l_2(t)+ \sigma_2 * p_2(t), \\ u'(t) =& \alpha_2 - \delta_1 * u(t) - \sigma_1 * v(t) * u(t) * l_1(t) + \sigma_2 * p_1(t), \\ z'(t) =& \alpha_2 - \delta_1 * z(t) - \sigma_1 * w(t) * z(t) * l_2(t) + \sigma_2 * p_2(t), \\ d'(t) =& \alpha_1+ \beta_2 * cd(t) - \delta_1 * d(t) - \beta_1 * c(t) * d(t) - \tau * d(t) * p_2(t), \\ d_1'(t) =& -\delta_1 * d_1(t) + \tau * cd(t) * p_2(t) + \tau * d(t) * p_2(t), \\ d_2'(t) =& -\delta_1 * d_2(t) + \tau * d(t) * p_2(t), \\ p_1'(t) =& \sigma_1 * v(t) * u(t) * l_1(t) - \sigma_2 * p_1(t), \\ p_2'(t) =& \sigma_1 * w(t) * z(t) * l_2(t) - \sigma_2 * p_2(t) \end{align}

Converse implication $f_3$

\begin{align} b'(t) =& \alpha_1- \delta_1 * b(t) - \beta_1 * b(t) * k_1(t) + \beta_2 * k_1b(t), \\ v'(t) =& \alpha_2 - \delta_1 * v(t) - \sigma_1 * v(t) * u(t) * l_1(t) + \sigma_2 * p_1(t), \\ w'(t) =& \alpha_2 - \delta_1 * w(t) - \sigma_1 * w(t) * z(t) * l_2(t) + \sigma_2 * p_2(t), \\ u'(t) =& \alpha_2 - \delta_1 * u(t) - \sigma_1 * v(t) * u(t) * l_1(t) + \sigma_2 * p_1(t), \\ z'(t) =& \alpha_2 - \delta_1 * z(t) - \sigma_1 * w(t) * z(t) * l_2(t) + \sigma_2 * p_2(t), \\ k'(t) =& \alpha_1- \delta_1 * k(t) - \tau * k(t) * p_1(t) - \tau * k(t) * p_2(t), \\ k_1'(t) =& -\delta_1 * k_1(t) - \beta_1 * b(t) * k_1(t) + \gamma_2 * k_{12}(t) + \\ & \gamma_2 * k_{123}(t) + \beta_2 * k_1b(t) - \gamma_1 * k_1(t) * k_2(t) - \gamma_1 * k_1(t) * k_{23}(t) \\ &+ \tau * k(t) * p_1(t) + \tau * k_1k_2(t) * p_1(t), \\ k_{12}'(t) =& -\delta_1 * k_{12}(t) - \gamma_2 * k_{12}(t) + \gamma_1 * k_1(t) * k_2(t), \\ k_{123}'(t) =& -\gamma_2 * k_{123}(t) + \gamma_1 * k_1(t) * k_{23}(t), \\ k_1b'(t) =& \beta_1 * b(t) * k_1(t) - \delta_1 * k_1b(t) - \beta_2 * k_1b(t), \\ k_1k_2'(t) =& -\tau * k_1k_2(t) * p_1(t) + \tau * k(t) * p_2(t), \\ k_2'(t) =& \gamma_2 * k_{12}(t) - \delta_1 * k_2(t) - \gamma_1 * k_1(t) * k_2(t) + \tau * k_1k_2(t) * p_1(t) + \tau * k_{23}(t) * p_2(t), \\ k_{23}'(t) =& \gamma_2 * k_{123}(t) - \delta_1 * k_{23}(t) - \gamma_1 * k_1(t) * k_{23}(t) + \tau * k(t) * p_1(t) - \tau * k_{23}(t) * p_2(t), \\ k_3'(t) =& -\delta_1 * k_3(t) + \tau * k(t) * p_2(t) + \tau * k_{23}(t) * p_2(t), \\ p_1'(t) =& \sigma_1 * v(t) * u(t) * l_1(t) - \sigma_2 * p_1(t), \\ p_2'(t) =& \sigma_1 * w(t) * z(t) * l_2(t) - \sigma_2 * p_2(t) \end{align}

Mathematical nonimplication $f_4$

\begin{align} v'(t) =& \alpha_2 - \delta_1 * v(t) - \sigma_1 * v(t) * u(t) * l_1(t) + \sigma_2 * p_1(t), \\ w'(t) =& \alpha_2 - \delta_1 * w(t) - \sigma_1 * w(t) * z(t) * l_2(t) + \sigma_2 * p_2(t), \\ u'(t) =& \alpha_2 - \delta_1 * u(t) - \sigma_1 * v(t) * u(t) * l_1(t) + \sigma_2 * p_1(t), \\ z'(t) =& \alpha_2 - \delta_1 * z(t) - \sigma_1 * w(t) * z(t) * l_2(t) + \sigma_2 * p_2(t), \\ d'(t) =& \alpha_1- \delta_1 * d(t) - \beta_1 * d(t) * g_1(t) + \beta_2 * g_1d(t) - \tau * d(t) * p_2(t), \\ d_1'(t) =& -\delta_1 * d_1(t) - \gamma_1 * d_1(t) * g_1(t) + \gamma_2 * g_1d_1(t) + \tau * d(t) * p_2(t), \\ d_2'(t) =& -\delta_1 * d_2(t) + \tau * d(t) * p_2(t) + \tau * g_1d(t) * p_2(t), \\ g'(t) =& \alpha_1- \delta_1 * g(t) - \tau * g(t) * p_1(t), \\ g_1'(t) =& -\delta_1 * g_1(t) - \beta_1 * d(t) * g_1(t) - \gamma_1 * d_1(t) * g_1(t) \\ & + \beta_2 * g_1d(t) + \gamma_2 * g_1d_1(t) + \gamma_2 * g_1g_2(t) - \gamma_1 * g_1(t) * g_2(t), \\ g_1d'(t) =& \beta_1 * d(t) * g_1(t) - \delta_1 * g_1d(t) - \beta_2 * g_1d(t) - \tau * g_1d(t) * p_2(t), \\ g_1d_1'(t) =& \gamma_1 * d_1(t) * g_1(t) - \gamma_2 * g_1d_1(t) + \tau * g_1d(t) * p_2(t), \\ g_1g_2'(t) =& -\gamma_2 * g_1g_2(t) + \gamma_1 * g_1(t) * g_2(t) + \tau * g(t) * p_1(t), \\ g_2'(t) =& \gamma_2 * g_1g_2(t) - \delta_1 * g_2(t) - \gamma_1 * g_1(t) * g_2(t), \\ p_1'(t) =& \sigma_1 * v(t) * u(t) * l_1(t) - \sigma_2 * p_1(t), \\ p_2'(t) =& \sigma_1 * w(t) * z(t) * l_2(t) - \sigma_2 * p_2(t) \end{align}

The function of light presence, denoted with $l(t)$, $l_1(t)$ or $l_2(t)$, is a piecewise function which equals 1 if the light is present and 0 otherwise. Functions $p_1$, $p_2$, $g$, $g_1$, $g_1d$, $g_1d_1$, $g_1g_2$, $g_1i$, $g_2$, $c$, $c_1$, $c_2$, $c_2d$, $cd$, $cd_2$, $w$, $z$, $d$, $d_1$, $d_2$, $k$, $k_1$, $k_{12}$, $k_{123}$, $k_1b$, $k_1k_2$, $k_2$, $k_{23}$, $k_3$, $i$, $b$, $k$, $v$, $u$, $w$, $z$ present concentrations of the equally labelled proteins. The constants used for the model are described in tab:refs .

Description Name Rate Reference
protein production rate $\alpha$ 3.5 * 20$^{-2}$ nMs$^{-1}$ Mariani:2010, Alon:2006
light inducible split protease production rate $\alpha_2$ 7 * 10$^{-1}$ nMs$^{-1}$ protein:protease DNA ratio is 1:20
protein degradation rate $\delta_1$ Log[2] / (3600 * 9) $s^{-1}$ Eden:2011
light inducible split protease dissociation rate $\sigma_2$ Log[2] / (60 * 5.5) s$^{-1}$ Taslimi:2016
light inducible split protease association rate $\sigma_1$ 1 nM$^{-1}$ s$^{-1}$ Alon:2006
protease cleavage rate $\tau$ 1.2 * 10$^-6$ nM$^-1$ s$^{-1}$ Yi:2013
stronger coiled coils association rate $\beta_1$ 3.17 * 10$^{-3}$ nM$^{-1}$ s$^{-1}$ DeCrescenzo:2003
stronger coiled coils dissociation rate $\beta_2$ 2 * 10$^{-4}$ s$^{-1}$ DeCrescenzo:2003
weaker coiled coils association rate $\gamma_1$ 7.3 * 10$^{-6}$ nM$^{-1}$ s$^{-1}$ DeCrescenzo:2003
weaker coiled coils dissociation rate $\gamma_2$ 1.67 * 10$^{-1}$ s$^{-1}$ DeCrescenzo:2003
time of light exposure / 60 s estimated from experimental results

  Results

We simulated the dynamics of established logic gates with the numerical integration of their mathematical models described in the previous paragraphs. The results of our simulations are shown in fig:buffer , fig:nor , fig:imply and fig:nimply . They confirm our assumption that all four types of logic functions offer shorter delay compared to their equivalents based on genetic regulatory networks. The rise and fall times of our gates are simulated to be at around 70 seconds compared to hours that transcription regulation circuits usually require.

$x_1$.

The output concentration of the logical function $x_1$ is shown with both possible inputs in the following order 0, 1.

$x_1$ NOR $x_2$.

The output concentration of the logical function $x_1$ NOR $x_2$ is shown with all four possible inputs in the following order (0,0), (0,1), (1,0), (1,1).

$x_2$ imply $x_1$.

The output concentration of the logical function $x_2$ imply $x_1$ is shown with all four possible inputs in the following order (0,0), (0,1), (1,0), (1,1).

$x_1$ nimply $x_2$.

The output concentration of the logical function $x_1$ nimply $x_2$ is shown with all four possible inputs in the following order (0,0), (0,1), (1,0), (1,1).

Our system also allows us to shorten the lifetime of the output signal without significantly reducing its concentrations by adding degradation tags to the output protein. The high output times achieved can even be similar to the input light induction time of 1 minute. These two characteristics can importantly influence several sequential induction of logic gates and the further development of several layered logic circuits.

Shortened output time due to the addition of degradation tags to the output protein.

 References