Line 151: | Line 151: | ||
<span style="display:inline-block;width:24%;font-size:12px;"><b>Figure 3D</b> 4. HydF in pDK (pDK-HydF in abbreviaFon/plasmid4)</span> | <span style="display:inline-block;width:24%;font-size:12px;"><b>Figure 3D</b> 4. HydF in pDK (pDK-HydF in abbreviaFon/plasmid4)</span> | ||
<span style="display:inline-block;width:24%;font-size:12px;"><b>Figure 3E</b> 5. HydG in pDS(pDS-HydG in abbreviaFon/plasmid5)</span> | <span style="display:inline-block;width:24%;font-size:12px;"><b>Figure 3E</b> 5. HydG in pDS(pDS-HydG in abbreviaFon/plasmid5)</span> | ||
− | <p style="text-align:center"><b>Figure 3B-E. The single plasmids to fuse by Acembl system. We obtained five sequence-confirmed single plasmids including the RBS, promoter region and loxP site. All those functional sequence have been sequenced. Click to see the detail sequenced information: <a href="https://static.igem.org/mediawiki/2016/7/75/G_HydA_SpyCatcher.pdf">HydA-SpyCatcher</a> <a href="https://static.igem.org/mediawiki/2016/d/db/G_HydA_SpyTag.pdf">HydA_SpyTag</a> <a href="https://static.igem.org/mediawiki/2016/9/91/G_HydE.pdf">HydE</a> <a href="https://static.igem.org/mediawiki/2016/9/98/G_HydF.pdf">HydF</a> <a href="https://static.igem.org/mediawiki/2016/b/bf/G_HydG.pdf">HydG</a>)</b></p> | + | <p style="text-align:center"><b>Figure 3B-E. The single plasmids to fuse by Acembl system. We obtained five sequence-confirmed single plasmids including the RBS, promoter region and loxP site. All those functional sequence have been sequenced. Click to see the detail sequenced information: <a href="https://static.igem.org/mediawiki/2016/7/75/G_HydA_SpyCatcher.pdf">HydA-SpyCatcher</a>, <a href="https://static.igem.org/mediawiki/2016/d/db/G_HydA_SpyTag.pdf">HydA_SpyTag</a>, <a href="https://static.igem.org/mediawiki/2016/9/91/G_HydE.pdf">HydE</a>, <a href="https://static.igem.org/mediawiki/2016/9/98/G_HydF.pdf">HydF</a>, <a href="https://static.igem.org/mediawiki/2016/b/bf/G_HydG.pdf">HydG</a>)</b></p> |
In particular, pACE is the “acceptor” plasmid with hydA sequence, while others are the “donor” plasmids with the auxiliary protein sequences. With one-step Cre recombination and subsequent transformation into BL21 or DH5a, we would obtain strictly fused plasmid with either all gene circuits integrated in one big plasmid or non-fused single plasmids. The screening of successful assembly involves different resistance (Ampicillin / Chloramphenicol / spectinomycin) and different kinds of origin. In pACE1, it has a replication origin that can be recognized by common DH5a or BL21. In pDC,pDS,pDk, it has a special origin (R6K gamma ori) can be recognized only by a mutation strain of <em>E. coli</em>. (PirHC or PirLC, which can express pir gene product for its replication.) Only a successful fusion into the acceptor plasmid can it propagate, using the accepters ori. Therefore, we efficiently put all four hyd sequences on one single plasmid, avoiding the potential problems imposed by the two-plasmid system.<p></p> | In particular, pACE is the “acceptor” plasmid with hydA sequence, while others are the “donor” plasmids with the auxiliary protein sequences. With one-step Cre recombination and subsequent transformation into BL21 or DH5a, we would obtain strictly fused plasmid with either all gene circuits integrated in one big plasmid or non-fused single plasmids. The screening of successful assembly involves different resistance (Ampicillin / Chloramphenicol / spectinomycin) and different kinds of origin. In pACE1, it has a replication origin that can be recognized by common DH5a or BL21. In pDC,pDS,pDk, it has a special origin (R6K gamma ori) can be recognized only by a mutation strain of <em>E. coli</em>. (PirHC or PirLC, which can express pir gene product for its replication.) Only a successful fusion into the acceptor plasmid can it propagate, using the accepters ori. Therefore, we efficiently put all four hyd sequences on one single plasmid, avoiding the potential problems imposed by the two-plasmid system.<p></p> | ||
The basis of our constructs, the four sequences, are not directly obtained from bacteriaBut they are all codon-optimized to ensure high-level expression. (The original sequences of hydrogenase are found on <a href="http://www.genome.jp">www.genome.jp.</a>)<p></p> | The basis of our constructs, the four sequences, are not directly obtained from bacteriaBut they are all codon-optimized to ensure high-level expression. (The original sequences of hydrogenase are found on <a href="http://www.genome.jp">www.genome.jp.</a>)<p></p> |
Revision as of 16:18, 18 October 2016