Difference between revisions of "Team:Slovenia/Hardware"

Line 17: Line 17:
 
</head>
 
</head>
 
<body>
 
<body>
 
  
 
<div id="example">
 
<div id="example">
Line 38: Line 37:
 
                         <i class="selected radio icon"></i>
 
                         <i class="selected radio icon"></i>
 
                         <b>Motivation</b>
 
                         <b>Motivation</b>
                     </a>
+
                     </a>
 
                     <a class="item" href="#mod" style="margin-left: 10%">
 
                     <a class="item" href="#mod" style="margin-left: 10%">
 
                         <i class="selected radio icon"></i>
 
                         <i class="selected radio icon"></i>
Line 50: Line 49:
 
                         <i class="selected radio icon"></i>
 
                         <i class="selected radio icon"></i>
 
                         <b>Evaluation</b>
 
                         <b>Evaluation</b>
<br />
+
                        <br/>
<b style="margin-left: 12%">of the device</b>
+
                        <b style="margin-left: 12%">of the device</b>
 
                     </a>
 
                     </a>
 
                     <a class="item" href="#set" style="margin-left: 10%">
 
                     <a class="item" href="#set" style="margin-left: 10%">
 
                         <i class="selected radio icon"></i>
 
                         <i class="selected radio icon"></i>
 
                         <b>Set-up</b>
 
                         <b>Set-up</b>
<br />
+
                        <br/>
<b style="margin-left: 12%">for experiments</b>
+
                        <b style="margin-left: 12%">for experiments</b>
 
                     </a>
 
                     </a>
 
                     <a class="item" href="//2016.igem.org/Team:Slovenia/Model">
 
                     <a class="item" href="//2016.igem.org/Team:Slovenia/Model">
Line 82: Line 81:
 
                             </ul>
 
                             </ul>
 
                         </div>
 
                         </div>
</div>
+
                    </div>
<div class="ui segment">
+
                    <div class="ui segment">
<h4><span id = "mot" class = "section">&nbsp;</span></h4>
+
                        <h4><span id="mot" class="section">&nbsp;</span></h4>
<p>The ultrasound (US) wave interacts with tissue and reflects back depending on the
+
                        <p>The ultrasound (US) wave interacts with tissue and reflects back depending on the
properties of the tissues such as velocity of sound in the tissue and its density, which
+
                            properties of the tissues such as velocity of sound in the tissue and its density, which
can be modeled using <a href="https://2016.igem.org/Team:Slovenia/Model">wave
+
                            can be modeled using <a href="https://2016.igem.org/Team:Slovenia/Model">wave
equation.</a> Higher frequencies have better resolution (shorter wavelengths) but
+
                                equation.</a> Higher frequencies have better resolution (shorter wavelengths) but
cannot penetrate as deep into the tissues. In diagnostic ultrasound frequencies above 1
+
                            cannot penetrate as deep into the tissues. In diagnostic ultrasound frequencies above 1
MHz are used. For better tissue penetration frequencies of interest for our purposes are
+
                            MHz are used. For better tissue penetration frequencies of interest for our purposes are
between 0.3 to 1 MHz yielding sufficient resolution and penetration at the same time
+
                            between 0.3 to 1 MHz yielding sufficient resolution and penetration at the same time
<x-ref>Speed2001</x-ref>
+
                            <x-ref>Speed2001</x-ref>
. Latest studies show that it is possible to use pulsed ultrasound for neurostimulation,
+
                            . Latest studies show that it is possible to use pulsed ultrasound for neurostimulation,
ultrasound therapy such as treatment of pain and the repair of various tissues, however
+
                            ultrasound therapy such as treatment of pain and the repair of various tissues, however
without clear knowledge which receptors or cell types we are targeting, and what is the
+
                            without clear knowledge which receptors or cell types we are targeting, and what is the
mechanism of the ultrasound stimulation effects
+
                            mechanism of the ultrasound stimulation effects
<x-ref>Vasquez2014</x-ref>
+
                            <x-ref>Vasquez2014</x-ref>
.
+
                            .
</p>
+
                        </p>
</div>
+
                    </div>
+
                    <h1><span class="section">&nbsp;</span>Results</h1>
+
                    <div class="ui segment">
                        <h1><span class="section">&nbsp;</span>Results</h1>
+
                        <div>
                        <div class="ui segment">
+
                            <h3><span id="mod" class="section">&nbsp;</span>MODUSON - Generating ultrasonic power
+
                                pulses for cell stimulation</h3>
<div>
+
                            <p>For the simple setup of the ultrasonic stimulation of cells we initially used ultrasonic
<h3><span id="mod" class="section">&nbsp;</span>MODUSON - Generating ultrasonic power
+
                                baths (
pulses for cell stimulation</h3>
+
                                <ref>1</ref>
<p>For the simple setup of the ultrasonic stimulation of cells we initially used ultrasonic
+
                                ) that are used to clean the laboratory equipment, small devices to clean jewelry or
baths (<ref>1</ref>) that are used to clean the laboratory equipment, small devices to clean jewelry or
+
                                ultrasonic cell disruptors, which however offer little control over the intensity,
ultrasonic cell disruptors, which however offer little control over the intensity,
+
                                frequency or pulse shapes and numbers of repetitions and are not appropriate to monitor
frequency or pulse shapes and numbers of repetitions and are not appropriate to monitor
+
                                activation of mechanosensors under the fluorescence microscope. However, one member of
activation of mechanosensors under the fluorescence microscope. However, one member of
+
                                the team is a student of electrical engineering and this was the right challenge for
the team is a student of electrical engineering and this was the right challenge for
+
                                him.
him.
+
                            </p>
</p>
+
                            <div style="float:right; width:100%">
<div style="float:right; width:100%">
+
                                <figure data-ref="1">
<figure data-ref="1">
+
                                    <img src=" https://static.igem.org/mediawiki/2016/3/32/T--Slovenia--5.1.15.png">
<img src=" https://static.igem.org/mediawiki/2016/3/32/T--Slovenia--5.1.15.png">
+
                                    <figcaption><b>Different experiment configurations.</b><br/>
<figcaption><b>Different experiment configurations.</b><br/>
+
                                        <p style="text-align:justify">Testing homogeneity of pressure in each well with
  <p style="text-align:justify">Testing homogeneity of pressure in each well with a plate immersed in the
+
                                            a plate immersed in the
ultrasonic bath.
+
                                            ultrasonic bath.
</p>
+
                                        </p>
</figcaption>
+
                                    </figcaption>
</figure>
+
                                </figure>
</div>
+
                            </div>
  
<p>For the generation of specific shapes of ultrasound pulses researchers usually use a
+
                            <p>For the generation of specific shapes of ultrasound pulses researchers usually use a
setup consisting of two signal generators (one for switching on and off the train of US
+
                                setup consisting of two signal generators (one for switching on and off the train of US
pulses and the other one to produce the sinusoidal signal of suitable frequency). This
+
                                pulses and the other one to produce the sinusoidal signal of suitable frequency). This
signal is further fed to the amplifier and then to the ultrasonic transducer.
+
                                signal is further fed to the amplifier and then to the ultrasonic transducer.
Furthermore, an ultrasonic sensor is required to evaluate and control the magnitude of
+
                                Furthermore, an ultrasonic sensor is required to evaluate and control the magnitude of
the ultrasound. Usually a hydrophone is used in combination with an amplifier and an
+
                                the ultrasound. Usually a hydrophone is used in combination with an amplifier and an
oscilloscope. This setup is complex to establish and difficult to use. Therefore, the
+
                                oscilloscope. This setup is complex to establish and difficult to use. Therefore, the
goal of a part of the iGEM 2016 group (student of electrical engineering) was to develop
+
                                goal of a part of the iGEM 2016 group (student of electrical engineering) was to develop
a device (named Moduson), which would be capable of providing appropriate signals
+
                                a device (named Moduson), which would be capable of providing appropriate signals
required to perform specific ultrasonic experiments in a single apparatus and as such
+
                                required to perform specific ultrasonic experiments in a single apparatus and as such
easy to use. The research and development of the device was performed in the Laboratory
+
                                easy to use. The research and development of the device was performed in the Laboratory
for Bioelectromagnetics at the Faculty of Electrical Engineering, University of Ljubljana under
+
                                for Bioelectromagnetics at the Faculty of Electrical Engineering, University of
the supervision of prof. dr. Dejan Križaj and a company Noeto.</p>
+
                                Ljubljana under
 +
                                the supervision of prof. dr. Dejan Križaj and a company Noeto.</p>
  
</div>
+
                        </div>
<div>
+
                        <div>
<h3><span id="rel" class="section">&nbsp;</span>The basic requirements for the device and
+
                            <h3><span id="rel" class="section">&nbsp;</span>The basic requirements for the device and
realizations</h3>
+
                                realizations</h3>
  
<h5>Adaptability</h5>
+
                            <h5>Adaptability</h5>
  
<p>The device should be designed to be as flexible as possible in order to be capable of
+
                            <p>The device should be designed to be as flexible as possible in order to be capable of
delivering a wide range and different shapes of stimulation signals to stimulate cells
+
                                delivering a wide range and different shapes of stimulation signals to stimulate cells
under the microscope, cells in a petri dish, cells in a microplate immersed into a bath
+
                                under the microscope, cells in a petri dish, cells in a microplate immersed into a bath
and to stimulate animals. In order to fulfill this requirement we selected a dedicated
+
                                and to stimulate animals. In order to fulfill this requirement we selected a dedicated
embedded measurement card Red Pitaya acting as an embedded computer. This embedded
+
                                embedded measurement card Red Pitaya acting as an embedded computer. This embedded
device is based on Linux system and can be completely customized to the user’s needs.
+
                                device is based on Linux system and can be completely customized to the user’s needs.
Furthermore, it can be Wi-Fi controlled so the final application is based on modern
+
                                Furthermore, it can be Wi-Fi controlled so the final application is based on modern
programming tools such as JavaScript, C++, HTML, etc. The final application is basically
+
                                programming tools such as JavaScript, C++, HTML, etc. The final application is basically
a web page, accessible with any computer capable of the Wi-Fi connection. This
+
                                a web page, accessible with any computer capable of the Wi-Fi connection. This
application gives complete control of all stimulation parameters and operation of the
+
                                application gives complete control of all stimulation parameters and operation of the
device. Another advantage of the platform used is its capability of simple integration with
+
                                device. Another advantage of the platform used is its capability of simple integration
Matlab through so-called SCPI commands, usually used in the instrumentation for easy
+
                                with
control and data acquisition making the device perfect research and development tool.
+
                                Matlab through so-called SCPI commands, usually used in the instrumentation for easy
Simple example of SCPI commands in Matlab for pulsed bursts is shown below:</p>
+
                                control and data acquisition making the device perfect research and development tool.
<div style="float:left; width:100%">
+
                                Simple example of SCPI commands in Matlab for pulsed bursts is shown below:</p>
<figure>
+
                            <div style="float:left; width:100%">
<img src=" https://static.igem.org/mediawiki/2016/b/b6/T--Slovenia--5.1.5.png">
+
                                <figure>
</figure>
+
                                    <img src=" https://static.igem.org/mediawiki/2016/b/b6/T--Slovenia--5.1.5.png">
</div>
+
                                </figure>
 +
                            </div>
  
  
<p style="clear:both">On the
+
                            <p style="clear:both">On the
<ref>2</ref>
+
                                <ref>2</ref>
a typical sequence of a stimulation signal constructed of a set number of sine waves of
+
                                a typical sequence of a stimulation signal constructed of a set number of sine waves of
defined frequency that is repeated for required number of times with selected repetition
+
                                defined frequency that is repeated for required number of times with selected repetition
period is shown.
+
                                period is shown.
</p>
+
                            </p>
<div style="float:left; width:100%">
+
                            <div style="float:left; width:100%">
<figure data-ref="2">
+
                                <figure data-ref="2">
<img src="https://static.igem.org/mediawiki/2016/6/6e/T--Slovenia--5.1.6.png ">
+
                                    <img src="https://static.igem.org/mediawiki/2016/6/6e/T--Slovenia--5.1.6.png ">
<figcaption><b>Signal parameters.</b><br/>
+
                                    <figcaption><b>Signal parameters.</b><br/>
<p style="text-align:justify">Parameters that can be set for a typical stimulation signal.
+
                                        <p style="text-align:justify">Parameters that can be set for a typical
</p>
+
                                            stimulation signal.
</figcaption>
+
                                        </p>
</figure>
+
                                    </figcaption>
</div>
+
                                </figure>
 +
                            </div>
  
<h5>Simple graphical user interface</h5>
+
                            <h5>Simple graphical user interface</h5>
<p>Users of the device do not need to be computer experts and do not need to have knowledge
+
                            <p>Users of the device do not need to be computer experts and do not need to have knowledge
on the signal generators, amplifiers and oscilloscopes. Therefore, the motivation was to
+
                                on the signal generators, amplifiers and oscilloscopes. Therefore, the motivation was to
design and develop a simple user-friendly graphical interface with all the relevant
+
                                design and develop a simple user-friendly graphical interface with all the relevant
parameters that need to be set in order to run the experiments from the Web page. To
+
                                parameters that need to be set in order to run the experiments from the Web page. To
accomplish this, dedicated software was written that enables users to design and run the
+
                                accomplish this, dedicated software was written that enables users to design and run the
experiment and evaluate the results. <ref>3</ref> presents a developed user interface. On the right side (US burst settings -> STIMULATION
+
                                experiment and evaluate the results.
PULSE) we can set parameters, such as the amplitude of the signal, frequency and number
+
                                <ref>3</ref>
of sine waves. Below these settings, repetition parameters of the signal (PULSE
+
                                presents a developed user interface. On the right side (US burst settings -> STIMULATION
REPETITION) such as the number of pulse repetitions and its frequency can be set. When
+
                                PULSE) we can set parameters, such as the amplitude of the signal, frequency and number
all parameters are set, the signal can be previewed by clicking the SHOW BURST button.
+
                                of sine waves. Below these settings, repetition parameters of the signal (PULSE
The pulse sequence is initiated with the START button. The acquired signal from
+
                                REPETITION) such as the number of pulse repetitions and its frequency can be set. When
hydrophone is seen on the main plot. At the top of the interface, there are options to
+
                                all parameters are set, the signal can be previewed by clicking the SHOW BURST button.
export the image of a graph and csv data of the acquired signal. Chosen values of
+
                                The pulse sequence is initiated with the START button. The acquired signal from
parameters can also be saved for the next use of the device.
+
                                hydrophone is seen on the main plot. At the top of the interface, there are options to
</p>
+
                                export the image of a graph and csv data of the acquired signal. Chosen values of
<div style="float:left; width:50%">
+
                                parameters can also be saved for the next use of the device.
<figure data-ref="3">
+
                            </p>
<img onclick="resize(this);"
+
                            <div style="float:left; width:50%">
src=" https://static.igem.org/mediawiki/2016/b/bf/T--Slovenia--5.1.7.png">
+
                                <figure data-ref="3">
<figcaption><b>Application interface.</b><br/>
+
                                    <img onclick="resize(this);"
  <p style="text-align:justify"> Web based interface used for setting of the signal parameters.
+
                                        src=" https://static.igem.org/mediawiki/2016/b/bf/T--Slovenia--5.1.7.png">
  </p>
+
                                    <figcaption><b>Application interface.</b><br/>
</figcaption>
+
                                        <p style="text-align:justify"> Web based interface used for setting of the
</figure>
+
                                            signal parameters.
</div>
+
                                        </p>
 +
                                    </figcaption>
 +
                                </figure>
 +
                            </div>
  
<h5 style="clear:both">Signal amplifier</h5>
+
                            <h5 style="clear:both">Signal amplifier</h5>
  
<div style="width: 33%; float:left;">
+
                            <div style="width: 33%; float:left;">
<figure data-ref="4">
+
                                <figure data-ref="4">
<img class="ui medium image" onclick="resize(this);"
+
                                    <img class="ui medium image" onclick="resize(this);"
src=" https://static.igem.org/mediawiki/2016/7/7e/T--Slovenia--5.1.8.png">
+
                                        src=" https://static.igem.org/mediawiki/2016/7/7e/T--Slovenia--5.1.8.png">
<figcaption><b>Simulation scheme.</b><br/>
+
                                    <figcaption><b>Simulation scheme.</b><br/>
<p style="text-align:justify">Scheme used in LT Spice simulations.
+
                                        <p style="text-align:justify">Scheme used in LT Spice simulations.
  </p>
+
                                        </p>
  </figcaption>
+
                                    </figcaption>
</figure>
+
                                </figure>
</div>
+
                            </div>
<div style="width: 33%; float:left;">
+
                            <div style="width: 33%; float:left;">
<figure data-ref="5">
+
                                <figure data-ref="5">
<img class="ui medium image" onclick="resize(this);"
+
                                    <img class="ui medium image" onclick="resize(this);"
src="https://static.igem.org/mediawiki/2016/3/3b/T--Slovenia--5.1.9.png ">
+
                                        src="https://static.igem.org/mediawiki/2016/3/3b/T--Slovenia--5.1.9.png ">
<figcaption><b>Model of transducer.</b><br/>
+
                                    <figcaption><b>Model of transducer.</b><br/>
<p style="text-align:justify">Equivalent model of ultrasonic transducer based on a BVD model.
+
                                        <p style="text-align:justify">Equivalent model of ultrasonic transducer based on
</p>
+
                                            a BVD model.
</figcaption>
+
                                        </p>
</figure>
+
                                    </figcaption>
</div>
+
                                </figure>
<div style="width: 33%; float:left;">
+
                            </div>
<figure data-ref="6">
+
                            <div style="width: 33%; float:left;">
<img class="ui medium image" onclick="resize(this);"
+
                                <figure data-ref="6">
src=" https://static.igem.org/mediawiki/2016/0/0a/T--Slovenia--5.1.10.png">
+
                                    <img class="ui medium image" onclick="resize(this);"
<figcaption><b>Moduson.</b><br/>
+
                                        src=" https://static.igem.org/mediawiki/2016/0/0a/T--Slovenia--5.1.10.png">
<p style="text-align:justify">Constructed device with a simple interface; an ON/OFF button, a BNC output for
+
                                    <figcaption><b>Moduson.</b><br/>
the transducer and a button to trigger stimulation pulses. The pulses can also
+
                                        <p style="text-align:justify">Constructed device with a simple interface; an
be triggered directly through the Web interface.
+
                                            ON/OFF button, a BNC output for
</p>
+
                                            the transducer and a button to trigger stimulation pulses. The pulses can
</figcaption>
+
                                            also
</figure>
+
                                            be triggered directly through the Web interface.
</div>
+
                                        </p>
<p style="clear:both;"></p>
+
                                    </figcaption>
<p>We built the circuitry with real elements on a prototype board where several additional
+
                                </figure>
alterations were required, as the real elements do not have ideal characteristics as the
+
                            </div>
ones included in the simulation. Another challenge was the design of a suitable
+
                            <p style="clear:both;"></p>
transformer to increase the voltage amplitude of the signal. The transformer is also
+
                            <p>We built the circuitry with real elements on a prototype board where several additional
required to operate as an impedance transformer. Lowering impedance of the ultrasonic
+
                                alterations were required, as the real elements do not have ideal characteristics as the
transducer enables higher current levels and consequently higher power values.</p>
+
                                ones included in the simulation. Another challenge was the design of a suitable
<p>Once a suitable signal is generated, it needs to be amplified from a signal level
+
                                transformer to increase the voltage amplitude of the signal. The transformer is also
(amplitude of 2 V) to several hundred volts or even above 1000 V, which poses a serious
+
                                required to operate as an impedance transformer. Lowering impedance of the ultrasonic
engineering challenge. For this purpose, we first designed a circuitry on a conceptual
+
                                transducer enables higher current levels and consequently higher power values.</p>
level and simulated it with LT Spice (<ref>4</ref>). In the simulations an electric model of a transducer was considered as a combination
+
                            <p>Once a suitable signal is generated, it needs to be amplified from a signal level
of capacitors, inductors and resistors wired in parallel (<ref>5</ref>). This model enables simulation of ultrasonic transducers with several resonant
+
                                (amplitude of 2 V) to several hundred volts or even above 1000 V, which poses a serious
frequencies. Simulations show that our device can reach the power at transducer around
+
                                engineering challenge. For this purpose, we first designed a circuitry on a conceptual
92W, which is close to the measured 86W in the real system.
+
                                level and simulated it with LT Spice (
</p>
+
                                <ref>4</ref>
</div>
+
                                ). In the simulations an electric model of a transducer was considered as a combination
<div>
+
                                of capacitors, inductors and resistors wired in parallel (
<h3><span id="eva" class="section">nbsp;</span>Evaluation of the developed device
+
                                <ref>5</ref>
</h3>
+
                                ). This model enables simulation of ultrasonic transducers with several resonant
 +
                                frequencies. Simulations show that our device can reach the power at transducer around
 +
                                92W, which is close to the measured 86W in the real system.
 +
                            </p>
 +
                        </div>
 +
                        <div>
 +
                            <h3><span id="eva" class="section">nbsp;</span>Evaluation of the developed device
 +
                            </h3>
  
<p>Functionality of the Moduson was first tested without any connected load. <ref>7</ref> presents a typical output measured with an oscilloscope for a signal of frequency 310
+
                            <p>Functionality of the Moduson was first tested without any connected load.
kHz.
+
                                <ref>7</ref>
</p>
+
                                presents a typical output measured with an oscilloscope for a signal of frequency 310
 +
                                kHz.
 +
                            </p>
  
<div style="float:left; width:100%">
+
                            <div style="float:left; width:100%">
<figure data-ref="7">
+
                                <figure data-ref="7">
<img src="https://static.igem.org/mediawiki/2016/5/58/T--Slovenia--5.1.2.png ">
+
                                    <img src="https://static.igem.org/mediawiki/2016/5/58/T--Slovenia--5.1.2.png ">
<figcaption><b>Typical output signal without load.</b><br/>
+
                                    <figcaption><b>Typical output signal without load.</b><br/>
<p style="text-align:justify">Amplitude of acquired signal depends on the winding of transformer.
+
                                        <p style="text-align:justify">Amplitude of acquired signal depends on the
</p>
+
                                            winding of transformer.
</figcaption>
+
                                        </p>
</figure>
+
                                    </figcaption>
</div>
+
                                </figure>
 +
                            </div>
  
<p>Developed device was tested with several transducers with resonance frequencies ranging
+
                            <p>Developed device was tested with several transducers with resonance frequencies ranging
from 300 kHz up to 1 MHz. Most experiments were performed with an unfocused transducer
+
                                from 300 kHz up to 1 MHz. Most experiments were performed with an unfocused transducer
Olympus V318-SU (<ref>8</ref>) with a waterproof case, allowing it to be used in <i>in vitro</i> experiments.
+
                                Olympus V318-SU (
</p>
+
                                <ref>8</ref>
 +
                                ) with a waterproof case, allowing it to be used in <i>in vitro</i> experiments.
 +
                            </p>
  
<div style="float:left; width:50%">
+
                            <div style="float:left; width:50%">
<figure data-ref="8">
+
                                <figure data-ref="8">
<img src="https://static.igem.org/mediawiki/2016/f/fe/T--Slovenia--5.1.11.png ">
+
                                    <img src="https://static.igem.org/mediawiki/2016/f/fe/T--Slovenia--5.1.11.png ">
<figcaption><b>Ultrasound transducer V318-SU.</b><br/>
+
                                    <figcaption><b>Ultrasound transducer V318-SU.</b><br/>
<p style="text-align:justify">Handy waterproof case allowed us to use the transducer in most experiments.
+
                                        <p style="text-align:justify">Handy waterproof case allowed us to use the
</p>
+
                                            transducer in most experiments.
</figcaption>
+
                                        </p>
</figure>
+
                                    </figcaption>
</div>
+
                                </figure>
<div style="float:left; width:50%">
+
                            </div>
<figure data-ref="9">
+
                            <div style="float:left; width:50%">
<img src="https://static.igem.org/mediawiki/2016/2/2e/T--Slovenia--5.1.4.png ">
+
                                <figure data-ref="9">
<figcaption><b>Electric power of ultrasonic transducer before and after
+
                                    <img src="https://static.igem.org/mediawiki/2016/2/2e/T--Slovenia--5.1.4.png ">
compensation.</b><br/>
+
                                    <figcaption><b>Electric power of ultrasonic transducer before and after
<p style="text-align:justify">Electrical power with compensation was significantly increased with serial
+
                                        compensation.</b><br/>
compensation.</p>
+
                                        <p style="text-align:justify">Electrical power with compensation was
</figcaption>
+
                                            significantly increased with serial
</figure>
+
                                            compensation.</p>
</div>
+
                                    </figcaption>
 
+
                                </figure>
 
+
                            </div>
<p>
+
<ref>9</ref>
+
presents measured electric power using the transducer V318-SU. After partial
+
compensation of reactive part, the measured real power reached 86 W. This result
+
exceeded the set requirements.
+
</p>
+
 
+
<p>With compensation, voltage was considerably increased at contacts of transducer and
+
reached around 900Vpp as shown in <ref>10</ref>.
+
</p>
+
<div style="float:left; width:100%">
+
<figure data-ref="10">
+
<img src="https://static.igem.org/mediawiki/2016/3/3d/T--Slovenia--5.1.1.png ">
+
<figcaption><b>Voltage at input of a transducer V318-SU.</b><br/>
+
<p style="text-align:justify">Transducer requires relative high voltage to operate properly.
+
</p>
+
</figcaption>
+
</figure>
+
</div>
+
 
+
<p>We measured the emitted ultrasonic pressure indirectly with a hydrophone RP 31l shown in <ref>11</ref>. This hydrophone has a sensitivity of 50mV/100kPa at a frequency of 310kHz. It can be
+
connected directly to the oscilloscope input to detect the pressure of the ultrasonic
+
waves. Pressure measured 4 mm from the transducer reached 7 kPa which gives the
+
intensity of 33 W/cm<sup>2<sup>.</p>
+
  
<div style="float:left; width:50%">
 
<figure data-ref="11">
 
<img src="https://static.igem.org/mediawiki/2016/e/e5/T--Slovenia--5.1.12.png ">
 
<figcaption><b>Hydrophone RP 31l.</b><br/>
 
<p style="text-align:justify">Calibrated hydrophone used to measure pressure.
 
</p>
 
</figcaption>
 
</figure>
 
</div>
 
  
<p style="clear:both">Example of an output signal measured by a hydrophone is presented in
+
                            <p>
the <ref>12</ref>.
+
                                <ref>9</ref>
<p>
+
                                presents measured electric power using the transducer V318-SU. After partial
 +
                                compensation of reactive part, the measured real power reached 86 W. This result
 +
                                exceeded the set requirements.
 +
                            </p>
  
<div style="float:left; width:100%">
+
                            <p>With compensation, voltage was considerably increased at contacts of transducer and
<figure data-ref="12">
+
                                 reached around 900Vpp as shown in
<img src=" https://static.igem.org/mediawiki/2016/b/b8/T--Slovenia--5.1.3.png">
+
                                 <ref>10</ref>
<figcaption><b>Voltage signal detected using the hydrophone.</b><br/>
+
                                 .
<p style="text-align:justify">With calibration data, we can determine pressure which corresponds to acquired
+
                             </p>
voltage amplitude.
+
                             <div style="float:left; width:100%">
</p>
+
                                 <figure data-ref="10">
</figcaption>
+
                                     <img src="https://static.igem.org/mediawiki/2016/3/3d/T--Slovenia--5.1.1.png ">
</figure>
+
                                     <figcaption><b>Voltage at input of a transducer V318-SU.</b><br/>
</div>
+
                                         <p style="text-align:justify">Transducer requires relative high voltage to
<p style="clear:both;">
+
                                            operate properly.
</p>
+
                                        </p>
</div>
+
<div>
+
                            <h3><span id="set" class="section">nbsp;</span>Set-up for experiments with ultrasonic
+
                                pulses</h3>
+
 
+
                            <p>After we successfully tested the Moduson device, we aimed to design measurement set-up
+
                                for stimulation of cells cultivated in plastic 6-well plates, which allows insertion of
+
                                the ultrasound transducer. In order to ensure repeatable conditions in every experiment
+
                                the position of a transducer was fixed with a suitable holder. Several models of holders
+
                                were designed for different experimental configurations and a 3D-printer was used to
+
                                 fabricate a dedicated holder (<ref>13</ref>). This allowed positioning of the transducer at the fixed height above the bottom of a
+
                                 well (<ref>14</ref>), which was crucial due to the series of maximal and minimal intensity of generated
+
                                 pressure.
+
                             <p>
+
                             <div style="float:left; width:50%">
+
                                 <figure data-ref="13">
+
                                     <img src="https://static.igem.org/mediawiki/2016/8/88/T--Slovenia--5.1.13.png ">
+
                                     <figcaption><b>3D printer.</b><br/>
+
                                         <p style="text-align:justify">Printing a holder for the ultrasonic transducer that we used for a 6-well plate.
+
</p>
+
 
                                     </figcaption>
 
                                     </figcaption>
 
                                 </figure>
 
                                 </figure>
 
                             </div>
 
                             </div>
 +
 +
                            <p>We measured the emitted ultrasonic pressure indirectly with a hydrophone RP 31l shown in
 +
                                <ref>11</ref>
 +
                                . This hydrophone has a sensitivity of 50mV/100kPa at a frequency of 310kHz. It can be
 +
                                connected directly to the oscilloscope input to detect the pressure of the ultrasonic
 +
                                waves. Pressure measured 4 mm from the transducer reached 7 kPa which gives the
 +
                                intensity of 33 W/cm<sup>2<sup>.</p>
  
 
                             <div style="float:left; width:50%">
 
                             <div style="float:left; width:50%">
                                 <figure data-ref="14">
+
                                 <figure data-ref="11">
                                     <img src=" https://static.igem.org/mediawiki/2016/e/ea/T--Slovenia--5.1.14.png">
+
                                     <img src="https://static.igem.org/mediawiki/2016/e/e5/T--Slovenia--5.1.12.png ">
                                     <figcaption><b>Ultrasound based experiments on the microscope.</b><br/>
+
                                     <figcaption><b>Hydrophone RP 31l.</b><br/>
                                         <p style="text-align:justify">Ultrasonic transducer with a 3D printed holder in a 6-well plate.
+
                                         <p style="text-align:justify">Calibrated hydrophone used to measure pressure.
</p>
+
                                        </p>
 
                                     </figcaption>
 
                                     </figcaption>
 
                                 </figure>
 
                                 </figure>
 
                             </div>
 
                             </div>
  
                             <p style="clear:both;">
+
                             <p style="clear:both">Example of an output signal measured by a hydrophone is presented in
 +
                                the
 +
                                <ref>12</ref>
 +
                                .
 +
                            <p>
 +
 
 +
                                <div style="float:left; width:100%">
 +
                                    <figure data-ref="12">
 +
                                        <img src=" https://static.igem.org/mediawiki/2016/b/b8/T--Slovenia--5.1.3.png">
 +
                                        <figcaption><b>Voltage signal detected using the hydrophone.</b><br/>
 +
                            <p style="text-align:justify">With calibration data, we can determine pressure which
 +
                                corresponds to acquired
 +
                                voltage amplitude.
 
                             </p>
 
                             </p>
 +
                            </figcaption>
 +
                            </figure>
 
                         </div>
 
                         </div>
                         </div>
+
                        <p style="clear:both;">
 +
                         </p>
 +
                    </div>
 +
                    <div>
 +
                        <h3><span id="set" class="section">nbsp;</span>Set-up for experiments with ultrasonic
 +
                            pulses</h3>
  
 +
                        <p>After we successfully tested the Moduson device, we aimed to design measurement set-up
 +
                            for stimulation of cells cultivated in plastic 6-well plates, which allows insertion of
 +
                            the ultrasound transducer. In order to ensure repeatable conditions in every experiment
 +
                            the position of a transducer was fixed with a suitable holder. Several models of holders
 +
                            were designed for different experimental configurations and a 3D-printer was used to
 +
                            fabricate a dedicated holder (
 +
                            <ref>13</ref>
 +
                            ). This allowed positioning of the transducer at the fixed height above the bottom of a
 +
                            well (
 +
                            <ref>14</ref>
 +
                            ), which was crucial due to the series of maximal and minimal intensity of generated
 +
                            pressure.
 +
                        <p>
 +
                            <div style="float:left; width:50%">
 +
                                <figure data-ref="13">
 +
                                    <img src="https://static.igem.org/mediawiki/2016/8/88/T--Slovenia--5.1.13.png ">
 +
                                    <figcaption><b>3D printer.</b><br/>
 +
                        <p style="text-align:justify">Printing a holder for the ultrasonic transducer that we used for a
 +
                            6-well plate.
 +
                        </p>
 +
                        </figcaption>
 +
                        </figure>
 +
                    </div>
 +
 +
                    <div style="float:left; width:50%">
 +
                        <figure data-ref="14">
 +
                            <img src=" https://static.igem.org/mediawiki/2016/e/ea/T--Slovenia--5.1.14.png">
 +
                            <figcaption><b>Ultrasound based experiments on the microscope.</b><br/>
 +
                                <p style="text-align:justify">Ultrasonic transducer with a 3D printed holder in a 6-well
 +
                                    plate.
 +
                                </p>
 +
                            </figcaption>
 +
                        </figure>
 +
                    </div>
 +
 +
                    <p style="clear:both;">
 +
                    </p>
 
                 </div>
 
                 </div>
 
             </div>
 
             </div>
 +
 +
            <h2 class="ui left dividing header"><span id="ref-title" class="section">&nbsp;</span>References
 +
            </h2>
 +
            <div class="ui segment citing" id="references"></div>
 
         </div>
 
         </div>
 
     </div>
 
     </div>
 
</div>
 
</div>
 
<div>
 
<div>
<a href="//igem.org/Main_Page">
+
    <a href="//igem.org/Main_Page">
<img border="0" alt="iGEM" src="//2016.igem.org/wiki/images/8/84/T--Slovenia--logo_250x250.png" width="5%" style = "position: fixed; bottom:0%; right:1%;">
+
        <img border="0" alt="iGEM" src="//2016.igem.org/wiki/images/8/84/T--Slovenia--logo_250x250.png" width="5%"
</a>
+
            style="position: fixed; bottom:0%; right:1%;">
</div>
+
    </a>
 +
</div>
 
</body>
 
</body>
 
</html>
 
</html>

Revision as of 17:25, 18 October 2016

Hardware

  Ultrasound controlling device

  • Implementation of 90 W ultrasonic amplifier for pulsed cells stimulation.
  • Optimization of developed system in a given frequency range around 310 kHz.
  • User friendly controlling interface of device.
  • Capability of providing 7 kPa of pressure 4 mm from ultrasonic transducer.

 

The ultrasound (US) wave interacts with tissue and reflects back depending on the properties of the tissues such as velocity of sound in the tissue and its density, which can be modeled using wave equation. Higher frequencies have better resolution (shorter wavelengths) but cannot penetrate as deep into the tissues. In diagnostic ultrasound frequencies above 1 MHz are used. For better tissue penetration frequencies of interest for our purposes are between 0.3 to 1 MHz yielding sufficient resolution and penetration at the same time Speed2001 . Latest studies show that it is possible to use pulsed ultrasound for neurostimulation, ultrasound therapy such as treatment of pain and the repair of various tissues, however without clear knowledge which receptors or cell types we are targeting, and what is the mechanism of the ultrasound stimulation effects Vasquez2014 .

 Results

 MODUSON - Generating ultrasonic power pulses for cell stimulation

For the simple setup of the ultrasonic stimulation of cells we initially used ultrasonic baths ( 1 ) that are used to clean the laboratory equipment, small devices to clean jewelry or ultrasonic cell disruptors, which however offer little control over the intensity, frequency or pulse shapes and numbers of repetitions and are not appropriate to monitor activation of mechanosensors under the fluorescence microscope. However, one member of the team is a student of electrical engineering and this was the right challenge for him.

Different experiment configurations.

Testing homogeneity of pressure in each well with a plate immersed in the ultrasonic bath.

For the generation of specific shapes of ultrasound pulses researchers usually use a setup consisting of two signal generators (one for switching on and off the train of US pulses and the other one to produce the sinusoidal signal of suitable frequency). This signal is further fed to the amplifier and then to the ultrasonic transducer. Furthermore, an ultrasonic sensor is required to evaluate and control the magnitude of the ultrasound. Usually a hydrophone is used in combination with an amplifier and an oscilloscope. This setup is complex to establish and difficult to use. Therefore, the goal of a part of the iGEM 2016 group (student of electrical engineering) was to develop a device (named Moduson), which would be capable of providing appropriate signals required to perform specific ultrasonic experiments in a single apparatus and as such easy to use. The research and development of the device was performed in the Laboratory for Bioelectromagnetics at the Faculty of Electrical Engineering, University of Ljubljana under the supervision of prof. dr. Dejan Križaj and a company Noeto.

 The basic requirements for the device and realizations

Adaptability

The device should be designed to be as flexible as possible in order to be capable of delivering a wide range and different shapes of stimulation signals to stimulate cells under the microscope, cells in a petri dish, cells in a microplate immersed into a bath and to stimulate animals. In order to fulfill this requirement we selected a dedicated embedded measurement card Red Pitaya acting as an embedded computer. This embedded device is based on Linux system and can be completely customized to the user’s needs. Furthermore, it can be Wi-Fi controlled so the final application is based on modern programming tools such as JavaScript, C++, HTML, etc. The final application is basically a web page, accessible with any computer capable of the Wi-Fi connection. This application gives complete control of all stimulation parameters and operation of the device. Another advantage of the platform used is its capability of simple integration with Matlab through so-called SCPI commands, usually used in the instrumentation for easy control and data acquisition making the device perfect research and development tool. Simple example of SCPI commands in Matlab for pulsed bursts is shown below:

On the 2 a typical sequence of a stimulation signal constructed of a set number of sine waves of defined frequency that is repeated for required number of times with selected repetition period is shown.

Signal parameters.

Parameters that can be set for a typical stimulation signal.

Simple graphical user interface

Users of the device do not need to be computer experts and do not need to have knowledge on the signal generators, amplifiers and oscilloscopes. Therefore, the motivation was to design and develop a simple user-friendly graphical interface with all the relevant parameters that need to be set in order to run the experiments from the Web page. To accomplish this, dedicated software was written that enables users to design and run the experiment and evaluate the results. 3 presents a developed user interface. On the right side (US burst settings -> STIMULATION PULSE) we can set parameters, such as the amplitude of the signal, frequency and number of sine waves. Below these settings, repetition parameters of the signal (PULSE REPETITION) such as the number of pulse repetitions and its frequency can be set. When all parameters are set, the signal can be previewed by clicking the SHOW BURST button. The pulse sequence is initiated with the START button. The acquired signal from hydrophone is seen on the main plot. At the top of the interface, there are options to export the image of a graph and csv data of the acquired signal. Chosen values of parameters can also be saved for the next use of the device.

Application interface.

Web based interface used for setting of the signal parameters.

Signal amplifier
Simulation scheme.

Scheme used in LT Spice simulations.

Model of transducer.

Equivalent model of ultrasonic transducer based on a BVD model.

Moduson.

Constructed device with a simple interface; an ON/OFF button, a BNC output for the transducer and a button to trigger stimulation pulses. The pulses can also be triggered directly through the Web interface.

We built the circuitry with real elements on a prototype board where several additional alterations were required, as the real elements do not have ideal characteristics as the ones included in the simulation. Another challenge was the design of a suitable transformer to increase the voltage amplitude of the signal. The transformer is also required to operate as an impedance transformer. Lowering impedance of the ultrasonic transducer enables higher current levels and consequently higher power values.

Once a suitable signal is generated, it needs to be amplified from a signal level (amplitude of 2 V) to several hundred volts or even above 1000 V, which poses a serious engineering challenge. For this purpose, we first designed a circuitry on a conceptual level and simulated it with LT Spice ( 4 ). In the simulations an electric model of a transducer was considered as a combination of capacitors, inductors and resistors wired in parallel ( 5 ). This model enables simulation of ultrasonic transducers with several resonant frequencies. Simulations show that our device can reach the power at transducer around 92W, which is close to the measured 86W in the real system.

nbsp;Evaluation of the developed device

Functionality of the Moduson was first tested without any connected load. 7 presents a typical output measured with an oscilloscope for a signal of frequency 310 kHz.

Typical output signal without load.

Amplitude of acquired signal depends on the winding of transformer.

Developed device was tested with several transducers with resonance frequencies ranging from 300 kHz up to 1 MHz. Most experiments were performed with an unfocused transducer Olympus V318-SU ( 8 ) with a waterproof case, allowing it to be used in in vitro experiments.

Ultrasound transducer V318-SU.

Handy waterproof case allowed us to use the transducer in most experiments.

Electric power of ultrasonic transducer before and after compensation.

Electrical power with compensation was significantly increased with serial compensation.

9 presents measured electric power using the transducer V318-SU. After partial compensation of reactive part, the measured real power reached 86 W. This result exceeded the set requirements.

With compensation, voltage was considerably increased at contacts of transducer and reached around 900Vpp as shown in 10 .

Voltage at input of a transducer V318-SU.

Transducer requires relative high voltage to operate properly.

We measured the emitted ultrasonic pressure indirectly with a hydrophone RP 31l shown in 11 . This hydrophone has a sensitivity of 50mV/100kPa at a frequency of 310kHz. It can be connected directly to the oscilloscope input to detect the pressure of the ultrasonic waves. Pressure measured 4 mm from the transducer reached 7 kPa which gives the intensity of 33 W/cm2.

Hydrophone RP 31l.

Calibrated hydrophone used to measure pressure.

Example of an output signal measured by a hydrophone is presented in the 12 .

Voltage signal detected using the hydrophone.

With calibration data, we can determine pressure which corresponds to acquired voltage amplitude.

nbsp;Set-up for experiments with ultrasonic pulses

After we successfully tested the Moduson device, we aimed to design measurement set-up for stimulation of cells cultivated in plastic 6-well plates, which allows insertion of the ultrasound transducer. In order to ensure repeatable conditions in every experiment the position of a transducer was fixed with a suitable holder. Several models of holders were designed for different experimental configurations and a 3D-printer was used to fabricate a dedicated holder ( 13 ). This allowed positioning of the transducer at the fixed height above the bottom of a well ( 14 ), which was crucial due to the series of maximal and minimal intensity of generated pressure.

3D printer.

Printing a holder for the ultrasonic transducer that we used for a 6-well plate.

Ultrasound based experiments on the microscope.

Ultrasonic transducer with a 3D printed holder in a 6-well plate.

 References