Difference between revisions of "Team:TAS Taipei/Modeling"

Line 1: Line 1:
{{:Team:TU_Delft/Header}}
+
{{:Team:TAS_Taipei/Header}}
 +
 
 
<html>
 
<html>
    <head>
 
        <meta charset="utf-8">
 
        <title>iGEM TU Delft</title>
 
        <meta name="description" content="">
 
        <meta name="viewport" content="width=device-width, initial-scale=1">
 
  
        <!-- Bootstrap -->
+
<head>
        <link rel="stylesheet" href="https://2016.igem.org/Template:TU_Delft/Bootstrap?action=raw&ctype=text/css">
+
<title>Modeling - TAS Taipei iGEM Wiki</title>
  
        <!-- Font awesome -->
+
</head>
        <link rel="stylesheet" href="https://2016.igem.org/Team:Leiden/libraries/font-awesome-4-6-3/css/font-awesome-min?action=raw&ctype=text/css">
+
  
        <!-- Template main Css -->
+
<body data-spy="scroll" data-target="#category_navbar">
        <link rel="stylesheet" href="https://2016.igem.org/Template:TU_Delft/Style?action=raw&ctype=text/css">
+
<link rel="shortcut icon" href="https://static.igem.org/mediawiki/2014hs/2/2f/Tas_igemlogo.png">
+
<link href='http://fonts.googleapis.com/css?family=Lato' rel='stylesheet' type='text/css'>
  <style type='text/css'>
+
<link rel="stylesheet" href="https://2015.igem.org/Template:TAS_Taipei/css/compiled?action=raw&ctype=text/css">
      #top_title, #sideMenu{
+
<link rel="stylesheet" href="https://2015.igem.org/Template:TAS_Taipei/css/bootstrap?action=raw&ctype=text/css">
        display: none;
+
      }
+
  
      #content{
+
<script>localStorage.clear();</script>
        width: 100%;
+
<script src="https://2015.igem.org/Template:TAS_Taipei/js/jquery?action=raw&ctype=text/javascript"></script>
        margin: 0;
+
<script src='https://2015.igem.org/Template:TAS_Taipei/js/bootstrap?action=raw&ctype=text/javascript'></script>
        padding: 0;
+
<script src="https://2015.igem.org/Template:TAS_Taipei/js/jquerySlides?action=raw&ctype=text/javascript"></script>
        background: #f3f4f4
+
      }
+
    </style>
+
  
    </head>
 
  
    <body>
 
  
 +
<script>
 +
$(document).ready(function() {
 +
if(document.domain === "2015.igem.org")
 +
setTimeout(function() {
 +
$("style:eq(0)").remove();
 +
}, 500);
 +
});
 +
</script>
 +
<div class="container" style='z-index:10;position:relative;'>
 +
<div class="row center-block" style = "text-align: left;">
 +
<nav style='font-family:Lato;font-size:22px;background-color:#2196f3;-webkit-transform: translateZ(0);z-index: 100;position: fixed;box-shadow: 0px 0px 10px black;'>
 +
<ul style='margin-left:0px'>
 +
<li class="dropdown">
 +
<a href="https://2015.igem.org/Team:TAS_Taipei/project"><h4 class="dropdown-toggle disabled" data-toggle="dropdown"><b>PROJECT</b></h4></a>
 +
<div class="dropdown-menu">
 +
<div class='subcategories_container'>
 +
<div>
 +
<h5><a href="https://2015.igem.org/Team:TAS_Taipei/project#background">Background</a></h5>
 +
</div>
 +
<div>
 +
<h5><a href="https://2015.igem.org/Team:TAS_Taipei/project/achievements">Achievements</a></h5>
 +
</div>
 +
<div>
 +
<h5><a href="https://2015.igem.org/Team:TAS_Taipei/Collaborations">Collaborations</a></h5>
 +
</div>
 +
<div>
 +
<h5><a href="https://2015.igem.org/Team:TAS_Taipei/Parts">Parts</a></h5>
 +
</div>
 +
</div>
 +
<div style='height:140px;'>
 +
<img src="https://static.igem.org/mediawiki/2015/5/5b/Tas_icon_project.png">
 +
<h4><b>Granzyme B</b> - a blessing and a curse. It's crucial for controlling cancer, but it causes damage when out of cellular space. Let's find the best of both worlds with <b>selective GzmB Inhibition.</b></h4>
 +
</div>
 +
 +
</div>
 +
</li>
 +
<li class="dropdown">
 +
<a href="https://2015.igem.org/Team:TAS_Taipei/wetlab"><h4 class='dropdown-toggle disabled' data-toggle="dropdown"><b>EXPERIMENTAL</b></h4></a>
 +
<div class="dropdown-menu">
 +
<div class='subcategories_container'>
 +
<div>
 +
<h5><a href="https://2015.igem.org/Team:TAS_Taipei/wetlab#construct">Granzyme Inhibitor Construct</a></h5>
 +
</div>
 +
<div>
 +
<h5><a href="https://2015.igem.org/Team:TAS_Taipei/wetlab#prototype">Prototype Work</a></h5>
 +
</div>
 +
<div>
 +
<h5><a href="https://2015.igem.org/Team:TAS_Taipei/wetlab#safety">Safety Switch</a></h5>
 +
</div>
 +
<div>
 +
<h5><a href="https://2015.igem.org/Team:TAS_Taipei/Notebook">Notebook</a></h5>
 +
</div>
 +
</div>
 +
<div style='height:140px;'>
 +
<img src="https://static.igem.org/mediawiki/2015/f/f8/Tas_icon_wetlab.png">
 +
<h4>We conduct science - and we are proud to show it. Follow along with our journey of discovery in the lab.</h4>
 +
</div>
 +
</div>
 +
</li>
 +
<li class="dropdown">
 +
<a href="https://2015.igem.org/Team:TAS_Taipei/Modeling"><h4 class='dropdown-toggle disabled' data-toggle="dropdown"><b>MODELING</b></h4></a>
 +
<div class="dropdown-menu">
 +
<div class='subcategories_container'>
 +
<div>
 +
<h5><a href="https://2015.igem.org/Team:TAS_Taipei/Modeling#serpin">SerpinA3N vs. GZMB</a></h5>
 +
</div>
 +
<div>
 +
<h5><a href="https://2015.igem.org/Team:TAS_Taipei/Modeling#act">ACT3m vs. GZMB</a></h5>
 +
</div>
 +
<div>
 +
<h5><a href="https://2015.igem.org/Team:TAS_Taipei/Modeling#analysis">Analysis</a></h5>
 +
</div>
 +
<div>
 +
<h5><a href="https://2015.igem.org/Team:TAS_Taipei/Modeling#calculator">Calculator</a></h5>
 +
</div>
 +
<div>
 +
<h5><a href="https://2015.igem.org/Team:TAS_Taipei/Modeling#flux">Flux Model</a></h5>
 +
</div>
 +
</div>
 +
<div style='height:140px;'>
 +
<img src="https://static.igem.org/mediawiki/2015/3/3e/Tas_icon_modeling.png">
 +
<h4>The power of <b>Math and Computation</b> provides us with valuable models and information. Find out how.</h4>
 +
</div>
 +
</div>
 +
</li>
 +
<li class="dropdown">
 +
<a href="https://2015.igem.org/Team:TAS_Taipei/Practices"><h4 class='dropdown-toggle disabled' data-toggle="dropdown"><b>HUMAN PRACTICE</b></h4></a>
 +
<div class="dropdown-menu">
 +
<div class='subcategories_container'>
 +
<div>
 +
<h5><a href="https://2015.igem.org/Team:TAS_Taipei/Practices#research">Research</a></h5>
 +
</div>
 +
<div>
 +
<h5><a href="https://2015.igem.org/Team:TAS_Taipei/Practices#change">Change</a></h5>
 +
</div>
 +
<div>
 +
<h5><a href="https://2015.igem.org/Team:TAS_Taipei/Practices#outreach">Outreach</a></h5>
 +
</div>
 +
<div>
 +
<h5><a href="https://2015.igem.org/Team:TAS_Taipei/Practices#entertainment">Entertainment</a></h5>
 +
</div>
 +
</div>
 +
<div style='height:140px;'>
 +
<img src="https://static.igem.org/mediawiki/2015/0/0f/Tas_icon_hp.png">
 +
<h4>We want to develop <b>socially concious solutions</b> - one that can be provided to all that need aid. Find out how we tackled <b>social aspects</b> of this project.</h4>
 +
</div>
 +
</div>
 +
</li>
 +
<li class="dropdown">
 +
<a href="https://2015.igem.org/Team:TAS_Taipei/Safety"><h4 class='dropdown-toggle disabled' data-toggle="dropdown"><b>BIOSAFETY</b></h4></a>
 +
<div class="dropdown-menu">
 +
<div style='height:100px;'>
 +
<div class='subcategories_container'>
 +
<div>
 +
<h5><a href="https://2015.igem.org/Team:TAS_Taipei/Safety#researcher_safety">Researcher Safety</a></h5>
 +
</div>
 +
<div>
 +
<h5><a href="https://2015.igem.org/Team:TAS_Taipei/Safety#environmental_safety">Environmental Safety</a></h5>
 +
</div>
 +
<div>
 +
<h5><a href="https://2015.igem.org/Team:TAS_Taipei/Safety#biobrick_safety">Biobrick Safety</a></h5>
 +
</div>
 +
<div>
 +
<h5><a href="https://2015.igem.org/Team:TAS_Taipei/Safety#local_safety">Local Safety</a></h5>
 +
</div>
 +
</div>
 +
<img src="https://static.igem.org/mediawiki/2015/9/91/Tas_icon_safety.png">
 +
<h4><b>Safety first.</b> Especially in a lab. Here's how we maintained and investigated the integrity and security of our work environment.</h4>
 +
</div>
 +
</div>
 +
</li>
 +
<li class="dropdown">
 +
<a href="https://2015.igem.org/Team:TAS_Taipei/team"><h4 class='dropdown-toggle disabled' data-toggle="dropdown"><b>TEAM</b></h4></a>
 +
<div class="dropdown-menu">
 +
<div class='subcategories_container'>
 +
<div>
 +
<h5><a href="https://2015.igem.org/Team:TAS_Taipei/team#members">Members</a></h5>
 +
</div>
 +
<div>
 +
<h5><a href="https://2015.igem.org/Team:TAS_Taipei/team#tas">About</a></h5>
 +
</div>
 +
<div>
 +
<h5><a href="https://2015.igem.org/Team:TAS_Taipei/Attributions">Attributions</a></h5>
 +
</div>
 +
</div>
 +
<div style='height:140px;'>
 +
<img src="https://static.igem.org/mediawiki/2015/3/34/Tas_icon_team.png">
 +
<h4>Behind every tough iGem project lies a tough, hard-working yet cheerful group of students. <b>Meet the team!</b></h4>
 +
</div>
 +
</div>
 +
</li>
 +
</ul>
 +
</nav>
 +
</div>
 +
<br>
 +
<br>
 +
<br>
 +
<div class="row center-block" style = "padding:10px;width:960px;background-color:#FFC107;box-shadow:0px 0px 5px black">
 +
<div class="row" style = "text-align:center;">
 +
<div class="col-sm-2">
 +
<a href="https://2015.igem.org/Team:TAS_Taipei" style='text-decoration: none'><img src="https://static.igem.org/mediawiki/2015/2/2f/Tas_igemlogo.png
 +
" alt="" style="width: 100px;"></a>
 +
</div>
 +
<div class="col-sm-8" style='text-align:center;'>
 +
<a href="https://2015.igem.org/Team:TAS_Taipei" style='text-decoration: none;'>
 +
<h2 style="font-family:'Lato';letter-spacing:10px;color: white; font-size: 60px;  margin-top: 0;  margin-bottom: 0;"><b>
 +
<img style = "height:64px;vertical-align:top" src = "https://static.igem.org/mediawiki/2015/5/5b/Tas_icon_project.png">RANZYME B</b></h2>
 +
</a>
 +
</div>
 +
<div class="col-sm-2">
 +
<a href="https://igem.org/HS"><img src="https://static.igem.org/mediawiki/2015/e/eb/Tas_igemlogo2.png" alt="" style="width: 100px;"></a>
 +
</div>
 +
</div>
 +
</div>
 +
<br>
 +
<div class="row card" id='bodycontainer' class='row'>
 +
<div class="col-sm-2" style='padding-left:8px;'>
 +
<div id="category_navbar">
 +
<ul class="nav nav-list" data-spy="affix" data-offset-top="150" style='-webkit-transform: translateZ(0);width:168px;margin-left:0' >
 +
<li><a href="#overview">Overview</a></li>
 +
<li><a href="#serpin">SerpinA3N vs. GZMB</a></li>
 +
<li><a href="#act">ACT3m vs. GZMB</a></li>
 +
<li><a href="#analysis">Analysis</a></li>
 +
<li><a href="#calculator">Calculator</a></li>
 +
<li><a href="#flux">Bandage Flux Model</a></li>
 +
</ul>
 +
</div>
 +
</div>
  
<div class="page-heading text-center">
+
<div class="col-sm-10">
 +
<div class="row">
 +
<div class="col-sm-12">
 +
<h1 id='overview'>Modeling</h1>
 +
<p>Granzyme B (GzmB) activity is elevated during inflammation, which can lead to excess cleavage of extracellular matrix (ECM) proteins in human tissue. Aside from causing damage to healthy tissues, this also exacerbates chronic inflammatory conditions, which keeps producing more GzmB and creates a vicious cycle. Our project aims to selectively inhibit GzmB in the ECM in order to prevent damage during chronic inflammation. Since we do not have the means of working with GzmB and directly testing its interactions in human test subjects, we predicted these interactions using mathematical models and data from the literature.</p>
 +
<p>The Hill equation is used to model the interaction between a ligand and its binding partner, a macromolecule/enzyme – in our case, how well a GzmB inhibitor binds to GzmB. It is a function of free ligand concentration, and it returns the fraction of macromolecules that are bound. Two constants are involved in this equation: the dissociation constant and the Hill coefficient (Weiss, 1997). </p>
 +
<p>The Hill coefficient describes cooperativity of the binding. Positive cooperativity (n>1) means that a bound enzyme has higher affinity for other ligands; negative cooperativity (n<1) means the converse is true; and non-cooperative binding (n=0) means that whether or not the enzyme is bound has no bearing on further binding (Weiss, 1997).</p>
 +
<p>The Hill equation is shown below: <br><img src = "https://static.igem.org/mediawiki/2015/b/ba/Model_eqn1.gif">
 +
, where [L] is concentration of the ligand (in our case, the inhibitor), Kd is the dissociation constant, and n is the Hill coefficient.
 +
</p>
 +
</div>
 +
</div>
  
<div class="container">
+
<div class = "row">
+
<div class="col-sm-12">
<h1 id="members" class="page-header">TU Delft iGEM team of 2016<span class="title-under"></span></h1>
+
<h2 id = 'serpin'>Mouse Inhibitor Serpina3n vs GzmB Activity</h2>
</div>
+
<p>Our first dataset (Table 1), which measures Serpina3n concentration vs relative GzmB activity, came from research by Ang <i>et al.</i> at the University of British Columbia (2011). Serpina3n is a known mouse GzmB inhibitor, and the paper documented the effects of Serpina3n on GzmB activity. Given its specificity in mice, this inhibitor was not chosen as part of the final construct, but data from this paper was used because the relevant constants can be analyzed and compared to other inhibitor substitutes.<br></p>
 +
<table class="table table-bordered" style='width: 70%;margin-left:15%;'>
 +
<caption style='caption-side:top;'><b>Table 1: Dataset obtained from Ang <i>et al.</i>,</b> showing Serpina3n Concentration vs Relative GzmB Activity </caption>
 +
<tbody>
 +
<tr>
 +
<td>[Sa3n] (nM)</td>
 +
<td>0.4</td>
 +
<td>1.4</td>
 +
<td>2.8</td>
 +
<td>3.8</td>
 +
<td>5</td>
 +
<td>7.8</td>
 +
<td>10</td>
 +
<td>16</td>
 +
<td>21</td>
 +
<td>40</td>
 +
<td>80</td>
 +
</tr>
 +
<tr>
 +
<td>Relative GzmB Activity (%)</td>
 +
<td>118</td>
 +
<td>110</td>
 +
<td>115</td>
 +
<td>102</td>
 +
<td>78</td>
 +
<td>76</td>
 +
<td>65</td>
 +
<td>56</td>
 +
<td>39</td>
 +
<td>15</td>
 +
<td>4</td>
 +
</tr>
 +
</tbody>
 +
</table>
 +
<p>Several adjustments were made to the equation and dataset so that we could have a meaningful model.  First, GzmB activity was shown as percentages ranging from 10% to 120% in the paper. This is likely because the control for the experiment was set at some point where the Serpina3n expression is not 0. Thus, we scaled down the data points by a factor of 1/120. This scaling is necessary since the Hill equation returns a fraction; the output is limited to between 0 and 1.</p>
 +
<p>More importantly, since the data was presented as the concentration of enzymes that remain free after binding, we needed to modify the Hill equation in order to model the fraction of unbound GzmB. Since <i>bound + unbound = 100%</i>, and the Hill equation models the bound component, it can be said that <img src = 'https://static.igem.org/mediawiki/2015/f/f8/Model_eqn2.gif'>, provided that the dataset is properly scaled to a range between 100%-0%.</p>
 +
<p>The FindFit function of Mathematica was used to find the unknown constants Kd and n for the modified Hill equation above. Our model returned a Kd of ≈ 28.130 and n ≈ 1.3540. The final equation is <img src = 'https://static.igem.org/mediawiki/2015/7/72/Model_eqn3.gif'>, where θ<sub>free</sub> is GzmB activity and [L] stands for concentration of Serpina3n (Figure 1).</p>
 +
<figure class = "col-sm-10">
 +
<img src="https://static.igem.org/mediawiki/2015/6/6a/Model_fig1.png">
 +
<figcaption class='darkblue'><b>Figure 1. Model: Serpina3n Inhibition of GzmB.</b> Using data from the Ang <i>et al.</i> paper, we developed an equation that models relative GzmB Activity as a function of Serpina3n concentration</figcaption>
 +
</figure>
 +
</div>
 +
</div>
  
</div>
+
<div class = "row">
 +
<div class="col-sm-12">
 +
<h2 id = 'act'>Human GzmB Inhibitor ACT3m</h2>
 +
<p>Given our model of Serpina3n, we also wanted to create a model for the protein used in our device, ACT3m. The dataset obtained from the ACT3m paper (Marcet-Palacios <i>et al.</i>, 2014) is the result of a colorimetric assay. Data was presented as absorbance values (A<sub>405</sub>), which correspond to the concentration of free GzmB, at different inhibitor concentrations. The paper used this to prove that their novel ACT3m inhibitor was the strongest out of their entire pool of possible candidates: treatment with ACT3m resulted in the lowest A<sub>405</sub> values, which suggests the strongest inhibition of GzmB.</p>
 +
<p>To model this set of data, similar adjustments had to be made. First, the dataset was scaled so the numbers ranged between 0 and 1 (in this case, increased by a factor of 2). The same modified Hill equation was used from the Serpina3n analysis. Our model returned a Kd of ≈ 13.336 and n ≈ 0.605, so the equation looks like <img class = "col-sm-3" src = 'https://static.igem.org/mediawiki/2015/1/17/Model_eqn4.gif'>(Figure 2).</p>
 +
<figure class = "col-sm-10">
 +
<img src="https://static.igem.org/mediawiki/2015/0/0f/Model_fig2.png">
 +
<figcaption class='darkblue'><b>Figure 2. Model: ACT3m Inhibition of GzmB.</b> Using data from the Marcet-Palacios <i>et al.</i> paper, we developed an equation that models relative GzmB activity as a function of ACT3m concentration.concentration.</figcaption>
 +
</figure>
 +
</div>
 +
</div>
  
<div class="main-container">
+
<div class = "row">
 +
<div class="col-sm-12">
 +
<h2 id ="analysis">Analysis</h2>
 +
<table class="table table-bordered" style='width: 70%;margin-left:15%;'>
 +
<caption style='caption-side:top;'><b>Table 2. Values Returned from Model:</b> the dissociation, association and Hill constants were calculated using Mathematica.</caption>
 +
<thead>
 +
<tr>
 +
<th></th>
 +
<th>Kd (nM)</th>
 +
<th>Ka (nM^-1)</th>
 +
<th>n</th>
 +
</tr>
 +
</thead>
 +
<tbody>
 +
<tr>
 +
<td>Sa3n</td>
 +
<td>28.130</td>
 +
<td>0.035549</td>
 +
<td>1.3540</td>
 +
</tr>
 +
<tr>
 +
<td>ACT3m</td>
 +
<td>13.336</td>
 +
<td>0.074985</td>
 +
<td>0.60462</td>
 +
</tr>
 +
</tbody>
 +
</table>
 +
<p>To interpret the above data, we first compare the constants of dissociation, Kd. In this context, Kd represents [Gzmb<sub>free</sub>][Inhibitor]/[Gzmb<sub>inhib</sub>-Inhibitor] at equilibrium (Bisswanger, 2008); therefore, a lower Kd would represent better inhibition: more bound GzmB compared to free GzmB.</p>
 +
<p>We can also analyze the Ka, the association constant. Ka is the inverse of Kd, and can be found as [Gzmb<sub>inhib</sub>-Inhibitor]/ [Gzmb<sub>free</sub>][Inhibitor]. This represents the relative amount of bound molecules, so that a higher Ka represents stronger binding affinity. Compared to the mouse inhibitor Serpina3n, human ACT3m has a lower Kd and a higher Ka, which suggests stronger inhibition. This conclusion is in agreement with Marcet-Palacios <i>et al.</i>, where this novel inhibitor was also compared to mouse Serpina3n (2014).</p>
 +
<p>The Hill constant may also be considered to analyze the nature of the inhibitor-GzmB complex. With n>1, Serpina3n is likely to bind to multiple sites on GzmB (Weiss <i>et al.</i>, 1997). ACT3m, in contrast, has a n<1, meaning that it likely binds competitively to selective and perhaps singular sites. This information is interesting; taking the association constants into account, this means that despite less opportunity to bind, ACT3m still acts as a better inhibitor than Serpina3n.</p>
 +
</div>
 +
</div>
  
<div class="container">
+
<div class = "row">
 +
<div class="col-sm-12">
 +
<h2 id ="calculator">Inhibitor Concentration Calculator</h2>
 +
<p class = "col-sm-12"><br>The following equations were developed with a question in mind:</p>
 +
<div class = "col-sm-2"></div>
 +
<h3 class = "col-sm-8 purple" style = "color:white; padding: 20px">How much inhibitor is needed to bring GzmB levels back to normal?</h3>
 +
<p class = 'col-sm-12'><br>Since there are many diseases that cause inflammation, and thus increased levels of GzmB, we created a calculator to determine the amount of treatment needed for any GzmB-related diseases. The model can show the relative percent decrease of GzmB as the inhibitor concentration increases. A patient could obtain information regarding their condition and calculate the amount of treatment needed.</p>
 +
<p class = 'col-sm-12'>Given that <img src = 'https://static.igem.org/mediawiki/2015/f/f8/Model_eqn2.gif'>, reversing the parameters yields the equivalent function of <img src = 'https://static.igem.org/mediawiki/2015/a/aa/Model_eqn5.gif'>, or <img src = 'https://static.igem.org/mediawiki/2015/9/95/Model_eqn6.gif'> . This equation calculates the inhibitor concentration that corresponds to a certain relative level of GzmB. </p>
 +
<p class = 'col-sm-12'>Rheumatoid arthritis (RA) is one of the main chronic inflammatory diseases made worse by elevated GzmB activity. We will use this as an example to show how the calculator works. GzmB concentrations in synovial fluids (joint fluids) of arthritis patients were determined from Tak <i>et al.</i>, 2009 (summarized in Table 3). There is a significant GzmB concentration difference between the control group and RA patients. The equation that returns a concentration of inhibitor can be used here, as it takes in relative GzmB levels and returns the amount of inhibitor needed.</p>
 +
<table class="table table-bordered" style='width: 70%;margin-left:15%;'>
 +
<caption style='caption-side:top;'><b>Table 3: GzmB Concentration in Synovial Fluids.</b> GzmB concentration in patients suffering from rheumatoid arthritis obtained from Tak <i>et al.</i>, 2009.</caption>
 +
<thead>
 +
<tr>
 +
<th></th>
 +
<th>Rheumatoid arthritis (pg/mL)</th>
 +
<th>Control (pg/mL)</th>
 +
</tr>
 +
</thead>
 +
<tbody>
 +
<tr>
 +
<td>Mean +/- s.d.</td>
 +
<td>3306 +/- 10311</td>
 +
<td>34 +/- 32</td>
 +
</tr>
 +
<tr>
 +
<td>Median</td>
 +
<td>251</td>
 +
<td>29</td>
 +
</tr>
 +
</tbody>
 +
</table>
  
+
<p>If a patient has a GzmB level that is X times the amount of control (around 34 pg/mL), then proportionally, X/100% = 100%/Y, where Y is the factor we want to decrease the patient’s level by (relative to his original level). Therefore, <img src = "https://static.igem.org/mediawiki/2015/d/d2/Model_eqn7.gif"> , and the amount of inhibitor needed [L] can be calculated. For example, if an RA patient has a GzmB concentration of 3400 pg/mL, then the patient has about 100x the normal GzmB level. Therefore, the Y factor would be 1%, and [L] can be calculated to be around 130 uM.</p>
                  <div class="our-team">
+
<p>It should be noted, however, that there is a large standard deviation for GzmB levels in RA patients, which means there are significant variations: if treatments are to be given, it would be better to conduct treatments on a case-by-case basis.</p>
 +
<div style = "border-style:solid; text-align:center; padding:20px">
 +
<h4 style = "padding:0">CALCULATOR</h4>
 +
<script>
 +
calculateee = function(){
 +
X = Number(document.getElementById("input").value)/100;
 +
if(isNaN(X)){
 +
calcResults.innerHTML = "(Please enter a number!)";
 +
return;
 +
}
 +
if(X < 1){
 +
if (X==.42){
 +
calcResults.innerHTML= "(Patient holds the answer to life, the universe and everything.)"
 +
return;
 +
}
 +
if (X<=0.5){
 +
calcResults.innerHTML= "(Patient probably has a messed up immune system.)"
 +
return;
 +
}
 +
calcResults.innerHTML = "(Patient is perfectly healthy, no need for treatment)";
  
                        <div class="container">
+
return;
 +
}
  
                        <h2  class="title-style-1">Team  Members<span class="title-under"></span></h2>
+
Y = 1/X;
                        <h3> Our team consists of ten motivated students, with interdisciplinary backgrounds from Delft University of Technology. Hover on our faces to find out more about us!</h3>
+
calcResults.innerHTML = Math.pow((13.336*(1-Y)/Y), 1/0.60462);
  
                        <div class="row">
+
if(X > 10000){
 +
calcResults.innerHTML += " (You should see a doctor at this point)";
 +
return;
 +
}
 +
}
 +
</script>
 +
<span>Patient's GzmB level is </span><input id = "input"><span>% of original</span>
 +
<button onclick = "calculateee()">Calculate!</button><br>
 +
<span>Treatment ([L]) : </span><b>
 +
<span id = "calcResults">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</span></b>
 +
<span>nM of ACT</span>
 +
</div>
 +
</div>
 +
</div>
  
                <div class="col-md-3 col-sm-6">
 
  
                    <div class="team-member">
+
<div class = "row">
                                <h4 class="member-name">Liza de Wilde</h4>
+
<div class="col-sm-12">
 +
<h2 id = 'flux'>Bandage Flux Model</h2>
 +
<p>Now that we know how to calculate the amount of treatment necessary, we can estimate how we apply our prototype to deliver the appropriate amount of treatment.</p>
 +
<p>Fick’s first law dictates that <img src = "https://static.igem.org/mediawiki/2015/e/e3/Model_eqn8.gif">, where J is the diffusion rate (flux) across the membrane (Lonsdale <i>et al.</i>). This models negative flux entering a closed surface. For our model, we want to model the flux that leaves the closed surface, which is our bandage. Thus, we use the model <img src = "https://static.igem.org/mediawiki/2015/1/1e/Model_eqn8b.gif">, where J is a positive flux.</p>
 +
<p>[Concentration] is the concentration of molecules inside the bandage, in our case the GzmB inhibitor. The thickness of the membrane is inversely related to J. D is the diffusivity, or the diffusion constant, of a certain configuration – a greater D generally represents a greater rate of diffusion. In our model, the diffusivity of our cellulose ester membrane was found to be 5.7x10^-6 cm^2/sec. Therefore, our diffusion model is <img src = "https://static.igem.org/mediawiki/2015/4/4e/Model_eqn9.gif">.
 +
</p>
 +
<p>
 +
When graphed, the 3-dimensional equation looks like Figure 3 below:
 +
</p>
 +
<figure class = "col-sm-10">
 +
<img src="https://static.igem.org/mediawiki/2015/f/f3/Model_fig3.png">
 +
<figcaption class='darkblue'><b>Figure 3. Flux relative to concentration and membrane thickness.</b> Fick's first law was used to predict the rate of flow across the membrane.</figcaption>
 +
</figure>
 +
<p class = "col-sm-12"> As demonstrated by the graph, thickness is inversely related to the diffusion rate; on the other hand, concentration is directly related to the diffusion rate. As part of future work, we can try to combine this model with the calculator to find proper treatment concentration, perhaps mathematically integrating the flux to determine an effective concentration that the bandage delivers. However, this would likely require experimental data to verify the accuracy of our current models.</p>
 +
</div>
 +
</div>
  
                        <div class="member-position">
+
<div class = "row">
                            MODELING MANAGER<br></br>
+
<div class="col-sm-12">
                                </div>
+
<h3>Citations</h3>
 +
<p>Weiss, J. (1997). The Hill equation revisited: Uses and misuses. Faseb J, 11(11), 835-841. Retrieved September 5, 2015, from Pubmed. <br><br>
  
                        <div class="thumbnail">
+
Ang, L., Boivin, W., Williams, S., Zhao, H., Abraham, T., Carmine-Simmen, K., Granville, D. (2011). Serpina3n attenuates granzyme B-mediated decorin cleavage and rupture in a murine model of aortic aneurysm. Cell Death Dis Cell Death and Disease. <br><br>
  
                            <img src="https://static.igem.org/mediawiki/2016/0/01/TU_Delft_Liza.jpg" alt="" class="cause-img">
+
Marcet-Palacios, M., Ewen, C., Pittman, E., Duggan, B., Carmine-Simmen, K., Fahlman, R., & Bleackley, R. (2014). Design and characterization of a novel human Granzyme B inhibitor. Protein Engineering Design and Selection, 9-17. <br><br>
                            <div class="on-hover hidden-xs">
+
                                        <p> I am a first years master student Nanobiology. This study program is both technical and biology orientated. Something I also find in the IGEM team. I think working together with people with diverse backgrounds in a team is a great opportunity that can extend my horizon.</p>
+
                                        <p>Within the team I am the 'Modelling Manager'. This means that I am responsible for the modelling in the project to help the science department in the team. </p>
+
                                    <p>Furthermore I will also play a role in the hardware development. </p>
+
                                    <p>Outside the lab I enjoy cooking and making pies, dancing, and sailing.</p>
+
                                    </div>
+
                        </div>
+
                         
+
                    </div> <!-- /.team-member -->
+
                   
+
                </div>
+
  
                <div class="col-md-3 col-sm-6">
+
Bisswanger, H. (2008). Enzyme kinetics: Principles and methods (2nd rev. and updated ed.). Weinheim: Wiley-VCH. <br><br>
  
                    <div class="team-member">
+
Tak PP, Spaeny-Dekking L, Kraan MC, Breedveld FC, Froelich CJ, Hack CE. The levels of soluble granzyme A and B are elevated in plasma and synovial fluid of patients with rheumatoid arthritis (RA). Clinical and Experimental Immunology. 1999;116(2):366-370. doi:10.1046/j.1365-2249.1999.00881.x.<br><br>
                       
+
                        <h4 class="member-name">Charlotte Koster</h4>
+
  
                        <div class="member-position">
 
                            GRAPHICS-, SAFETY- AND HARDWARE MANAGER
 
                        </div>
 
  
                        <div class="thumbnail">
+
Vaughan, M. (1959). Cellulose Acetate Membranes suitable for Osmotic Measurements. Nature, 43-44.<br><br>
  
                            <img src="https://static.igem.org/mediawiki/2016/a/a5/TU_Delft_Charlotte.jpg" alt="#" class="cause-img">
+
</p>
                                    <div class="on-hover hidden-xs">
+
</div>
                                        <p> Hi! I am a first year master student Life Science & Technology. During my studies I got fascinated by the concept of synthetic biology, so joining iGEM was an obvious choice for me! I am the multitasker of the team. First of all, I'm responsible for the safety, which is an important aspect, we don't want our laser bugs to escape! Furthermore I do all the graphics, so each logo, figure of picture you see is made by me! Lastly, I also take care of a part of the hardware, which is an exciting new field for me, there's a lot to learn! Furthermore, I'll do a lot of labwork and some modelling, a taste of everything!</p>
+
</div>
                                        <p>Whenever I'm not building organisms or laser setups I enjoy playing field hockey at Scoop, making music, going to festivals and concerts and traveling. You can probably imagine that I can't wait to present our laser-shooting-lens-bacteria with our awesome team in Boston!</p>
+
</div>
                                    </div>
+
                        </div>
+
  
                    </div> <!-- /.team-member -->
+
</div>
                 
+
                </div>
+
 
+
 
+
                <div class="col-md-3 col-sm-6">
+
 
+
                    <div class="team-member">
+
 
+
                        <h4 class="member-name">Lycka Kamoen</h4>
+
 
+
                        <div class="member-position">
+
                            SCIENCE MANAGER<br></br>
+
                                </div>
+
 
+
                        <div class="thumbnail">
+
 
+
                            <img src="https://static.igem.org/mediawiki/2016/7/7e/TU_Delft_Lycka.jpg" alt="" class="cause-img">
+
                            <div class="on-hover hidden-xs">
+
                                        <p> I am a first year master student Life Science & Technology. I enjoy learning new things, which is why I decided to join the iGEM competition. Whithin the team I am the science manager, meaning that I am in charge of the research related aspects of our project. I hope to learn a lot during this competition, including guiding our own research. </p>
+
                                        <p>Outside the lab I enjoy singing, cooking and having a drink with friends.</p>
+
                                    </div>
+
                        </div>
+
 
+
                   
+
                            </div>
+
 
+
                        </div>
+
                     
+
                <div class="col-md-3 col-sm-6">
+
 
+
                    <div class="team-member">
+
 
+
                        <h4 class="member-name">Tessa Vergroesen</h4>
+
 
+
                        <div class="member-position">
+
                            WIKI MANAGER<br></br>
+
                                </div>
+
 
+
                        <div class="thumbnail">
+
 
+
                            <img src="https://static.igem.org/mediawiki/2016/0/05/TU_Delft_Tessa.jpg" alt="" class="cause-img">
+
                            <div class="on-hover hidden-xs">
+
                                        <p> I am a second year bachelor student Nanobiology and a member of the Delft student rowing association Proteus-Eretes. I joined iGEM because I think it will teach me a lot about synthetic biology and teamwork at the same time. I am this years’ wiki manager, meaning that the layout, content and design of our website will be my responsibility.</p>
+
                                        <p>When I’m not studying, rowing or working on iGEM, you can find me relaxing in the sun, possibly enjoying a book, movie or my iPod.</p>                                    </div>
+
                        </div>
+
 
+
                    </div> <!-- /.team-member -->
+
                   
+
                </div>
+
                      </div>
+
                      <div class="row">
+
                           
+
                <div class="col-md-3 col-sm-6">
+
 
+
                    <div class="team-member">
+
 
+
                        <h4 class="member-name">Giannis Papazoglou</h4>
+
 
+
                        <div class="member-position">
+
                          TEAM LEADER<br></br>
+
                                </div>
+
                     
+
                        <div class="thumbnail">
+
 
+
                            <img src="https://static.igem.org/mediawiki/2016/0/0b/TU_Delft_Giannis.jpg" alt="" class="cause-img">
+
                            <div class="on-hover hidden-xs">
+
                                        <p> I am a first year Mechanical Engineering master student with track in Precision and Microsystems Engineering. I believe that the magic happens in multidisciplinary environments like the one we have in the iGEM team and when you leave your comfort zone to explore new ideas. That's why I decided to join a project so outside of my comfort zone and expertise.</p>
+
                                    <p>In my free time I like to play and listen to music (if you need a drummer call me :) ), biking and traveling when I have the time.</p>
+
                                    </div>
+
                        </div>
+
 
+
                    </div> <!-- /.team-member -->
+
                   
+
                </div>
+
                     
+
                <div class="col-md-3 col-sm-6">
+
 
+
                    <div class="team-member">
+
 
+
                        <h4 class="member-name">María Vázquez Vitali</h4>
+
 
+
                        <div class="member-position">
+
                            LAB MANAGER<br></br>
+
                                </div>
+
 
+
                        <div class="thumbnail">
+
 
+
                            <img src="https://static.igem.org/mediawiki/2016/e/e8/TU_Delft_Maria.jpg" alt="#" class="cause-img">
+
                            <div class="on-hover hidden-xs">
+
                                        <p> I am a first year Life Science & Technology master student from Barcelona. I joined the iGEM competition because I think it's a great opportunity to work in a team doing something we all like. My role in the team is lab manager, which means that I am in charge of everything that happens in the lab, in strong collaboration with the science manager. </p>
+
                                    <p>When I'm not working on iGEM I enjoy reading, going to the cinema and spending time with friends.</p>
+
                                    </div>
+
                        </div>
+
 
+
 
+
                    </div> <!-- /.team-member -->
+
                       
+
                        </div>
+
                       
+
                            <div class="col-md-3 col-sm-6">
+
 
+
                                <div class="team-member">
+
 
+
                                    <h4 class="member-name"><a href="#">Carmen Berends</a></h4>
+
                                   
+
                                    <div class="member-position">
+
                            POLICY AND PRACTISES MANAGER
+
                                    </div>
+
 
+
                                    <div class="thumbnail">
+
 
+
                            <img src="https://static.igem.org/mediawiki/2016/3/3c/TU_Delft_Carmen.jpg" alt="#" class="cause-img">
+
                            <div class="on-hover hidden-xs">
+
                                        <p> I am a first year master student Life Science & Technology. In this study disciplines of among other things chemistry, biology and physics are used to understand the cell and to create novel useful applications with these cell. This is also one of the most important goals of iGEM, which is why I decided to join the team.</p>
+
                                        <p>Within the team I am the Policy & Practice manager. This means that I am responsible for all the social, ethical and legal aspects of our project. Furthermore, I am in charge of the business plan we are planning to make.</p>
+
                                        <p> Outside the lab I am an international fencer and I am selected for the European championships in Poland in June. I also like cooking and to have fun with friends.</p>                                    </div>
+
                                    </div>
+
 
+
 
+
                                </div> <!-- /.team-member -->
+
                   
+
                            </div>
+
                         
+
                        <div class="col-md-3 col-sm-6">
+
 
+
                    <div class="team-member">
+
                        <h4 class="member-name">Iris de Vries</h4>
+
 
+
                                <div class="member-position">
+
                            HARDWARE MANAGER<br></br>
+
                                </div>
+
 
+
                        <div class="thumbnail">
+
 
+
                            <img src="https://static.igem.org/mediawiki/2016/6/6c/TU_Delft_Iris.jpg" alt="#" class="cause-img">
+
                                    <div class="on-hover hidden-xs">
+
                                        <p> I am a third year Aerospace engineering student. This obviously is an unconventional background for a member of the iGEM team, however, my interests lie more in the field of e.g. microbiology and not that much in the field of aerospace. Therefore, I am planning to (temporarily) leave engineering and continue my studies in Biomedicine next academic year.</p>
+
                                    <p>The main reason I wanted to join the iGEM team is that I wanted to experience the actual work involved with synthetic biology and increase my knowledge. The focus of the iGEM competition on innovation and relevance appeals to me as well. My function in the team is hardware manager, meaning I am involved in a physical implementation of our idea.</p>
+
                                  </div>   
+
                        </div>
+
 
+
 
+
 
+
                            </div> <!-- /.team-member -->
+
                   
+
                        </div>
+
 
+
                    </div>                 
+
                    <div class="row">
+
                       
+
                        <div class="col-md-3 col-sm-6">
+
 
+
                    <div class="team-member"></div> <!-- /.team-member -->
+
                 
+
                </div>
+
 
+
                          <div class="col-md-3 col-sm-6">
+
 
+
                    <div class="team-member">
+
 
+
                        <h4 class="member-name">Lara van der Woude</h4>
+
 
+
                        <div class="member-position">
+
                            FINANCE MANAGER<br></br>
+
                                </div>
+
 
+
                        <div class="thumbnail">
+
 
+
                            <img src="https://static.igem.org/mediawiki/2016/d/dc/TU_Delft_Lara.jpg" alt="#" class="cause-img">
+
                                    <div class="on-hover hidden-xs">
+
 
+
                                        <p>  I am a second year masterstudent in Life Science & Technology and Science Communication. During my studies I became interested in synthetic biology. Something I think is exciting is that iGEM enables our team to create a promising science project from scratch and decide all steps in this innovation trajectory. Another part of iGEM that attracted my attention was its aim to create more public awareness and opening a debate on synthetic biology. </p>
+
                                        <p>Within the team, I am the Financial Manager and responsible for external collaborations. I have to collect money, enabling us to do our experiments and I keep track of all our expenses. </p>
+
                                        <p>When I’m not doing iGEM or studying, I am rowing at the Delft student rowing association Proteus-Eretes, enjoying life and nature in the sun or sleeping!</p>
+
                                    </div>     
+
                        </div>
+
 
+
 
+
                    </div> <!-- /.team-member -->
+
                 
+
                </div>
+
                           
+
                        <div class="col-md-3 col-sm-6">
+
 
+
                    <div class="team-member">
+
 
+
                        <h4 class="member-name"><a href="#">Célina Reuvers </a></h4>
+
 
+
                        <div id="advisors" class="member-position">
+
                            PUBLIC RELATIONS MANAGER
+
                        </div>
+
 
+
                        <div class="thumbnail">
+
 
+
                            <img src="https://static.igem.org/mediawiki/2016/e/e6/TU_Delft_Celina.jpg" alt="#" class="cause-img">
+
                            <div class="on-hover hidden-xs">
+
                                        <p> I’m Célina, a third year Nanobiology student. The idea to start a project from scratch is how iGEM attracted me. I also enjoy the challenge of bringing everything you learned into practice and experience the limits of your knowledge. Working in a team, with students from different backgrounds has already been really educational. </p>
+
                                        <p>In the team I am the PR (Public Relations) manager. This means that I form the intercessor for the contact with the media. Besides that I update our social media with nice photos and our activities.</p>                                 
+
                                        <p>Outside of iGEM I play mandolin and guitar, ride on my horse or enjoy a good workout at the gym. If the weather allows it, I like skating and running. On top of that I love to bake a nice pie or cake, which is never a bad thing when you have a group of this many girls. </p>   
+
                                    </div>                               
+
                                </div>
+
 
+
                    </div> <!-- /.team-member -->
+
                           
+
                        </div>
+
                       
+
                    </div>
+
                     
+
         
+
 
+
        </div>
+
 
+
    </div>
+
+
        </div>
+
 
+
            <div  class="container">
+
+
                  <div class="our-team">
+
 
+
                        <div class="container">
+
 
+
                        <h2 id="members" class="title-style-1">Team Advisors<span class="title-under"></span></h2>
+
 
+
                        <div class="row">
+
 
+
                <div class="col-md-2 col-sm-4">
+
 
+
                    <div class="team-member">
+
 
+
                        <div class="thumbnail">
+
 
+
                            <img src="https://static.igem.org/mediawiki/2014/b/b6/TUDelft_2014_Anne_Meyer.jpg" alt="" class="cause-img">
+
                        </div>
+
 
+
                        <h4 class="member-name">Dr. Anne Meyer</h4>
+
 
+
                        <div class="member-position">
+
                            Primary PI
+
                                </div>
+
                     
+
                    </div> <!-- /.team-member -->
+
                   
+
                </div>
+
 
+
                <div class="col-md-2 col-sm-4">
+
 
+
                    <div class="team-member">
+
 
+
                        <div class="thumbnail">
+
 
+
                            <img src="http://idemalab.tudelft.nl/images/people/idema.jpg" alt="#" class="cause-img">
+
                                 
+
                        </div>
+
                               
+
                        <h4 class="member-name">Dr. Timon Idema</h4>
+
 
+
                        <div class="member-position">
+
                            Secondary PI
+
                        </div>
+
 
+
                    </div> <!-- /.team-member -->
+
                 
+
                </div>
+
 
+
 
+
                <div class="col-md-2 col-sm-4">
+
 
+
                    <div class="team-member">
+
 
+
                        <div class="thumbnail">
+
 
+
                            <img src="https://static.igem.org/mediawiki/2014/2/29/TU_Delft_2014_Esengul_thmb.jpg" alt="" class="cause-img">
+
                         
+
                        </div>
+
 
+
                        <h4 class="member-name">ing. Esengül Yildirim</h4>
+
 
+
                        <div class="member-position">
+
                            Instructor
+
                                </div>
+
                   
+
                            </div>
+
 
+
                        </div>
+
                     
+
                <div class="col-md-2 col-sm-4">
+
 
+
                    <div class="team-member">
+
 
+
                        <div class="thumbnail">
+
 
+
                            <img src="https://static.igem.org/mediawiki/2015/6/65/TUDelft_Helena.jpg" alt="" class="cause-img">
+
                           
+
                        </div>
+
 
+
                        <h4 class="member-name">Helena Shomar Monges MSc.</h4>
+
 
+
                        <div class="member-position">
+
                            Advisor
+
                        </div>
+
 
+
                    </div> <!-- /.team-member -->
+
                   
+
                </div>
+
                           
+
                <div class="col-md-2 col-sm-4">
+
 
+
                    <div class="team-member">
+
 
+
                        <div class="thumbnail">
+
 
+
                            <img src="https://static.igem.org/mediawiki/2014/2/24/TU_Delft_2014_Foto_JorineEeftens.jpg" alt="" class="cause-img">
+
 
+
                        </div>
+
 
+
                        <h4 class="member-name">Jorine Eeftens MSc.</h4>
+
 
+
                        <div class="member-position">
+
                          Advisor
+
                                </div>
+
                     
+
                    </div> <!-- /.team-member -->
+
                   
+
                </div>
+
                     
+
                <div class="col-md-2 col-sm-4">
+
 
+
                    <div class="team-member">
+
 
+
                        <div class="thumbnail">
+
 
+
                            <img src="https://static.igem.org/mediawiki/2014/b/bc/Delft2014_dominik.jpg" alt="#" class="cause-img">
+
 
+
                        </div>
+
                        <h4 class="member-name">Dominik Schmieden MSc.</h4>
+
 
+
                        <div class="member-position">
+
                            Advisor
+
                        </div>
+
 
+
                    </div> <!-- /.team-member -->
+
                       
+
                        </div>
+
                       
+
                       
+
                    </div>
+
                     
+
         
+
 
+
        </div>
+
 
+
    </div>
+
+
        </div>
+
  
 
</div>
 
</div>
 +
<br>
 +
<br><br>
  
 +
<canvas id="canvas-container" style = "z-index:-1"></canvas>
 +
<script type="text/javascript" src='https://2015.igem.org/Template:TAS_Taipei/js/field?action=raw&ctype=text/javascript'></script>
  
    <!--  Scripts================================================== -->
+
</body>
  
    <!-- jQuery -->
 
    <script type="text/javascript" src="https://2016.igem.org/Template:TU_Delft/jQuery?action=raw&ctype=text/javascript"></script>
 
 
    <!-- Bootsrap javascript file -->
 
    <script type="text/javascript" src="https://2016.igem.org/Template:TU_Delft/BootstrapJS?action=raw&ctype=text/javascript"></script>
 
 
 
 
</body>
 
 
</html>
 
</html>
{{:Team:TU_Delft/Footer}}
 

Revision as of 22:38, 10 July 2016

Team:TAS Taipei/Header

Modeling - TAS Taipei iGEM Wiki





Modeling

Granzyme B (GzmB) activity is elevated during inflammation, which can lead to excess cleavage of extracellular matrix (ECM) proteins in human tissue. Aside from causing damage to healthy tissues, this also exacerbates chronic inflammatory conditions, which keeps producing more GzmB and creates a vicious cycle. Our project aims to selectively inhibit GzmB in the ECM in order to prevent damage during chronic inflammation. Since we do not have the means of working with GzmB and directly testing its interactions in human test subjects, we predicted these interactions using mathematical models and data from the literature.

The Hill equation is used to model the interaction between a ligand and its binding partner, a macromolecule/enzyme – in our case, how well a GzmB inhibitor binds to GzmB. It is a function of free ligand concentration, and it returns the fraction of macromolecules that are bound. Two constants are involved in this equation: the dissociation constant and the Hill coefficient (Weiss, 1997).

The Hill coefficient describes cooperativity of the binding. Positive cooperativity (n>1) means that a bound enzyme has higher affinity for other ligands; negative cooperativity (n<1) means the converse is true; and non-cooperative binding (n=0) means that whether or not the enzyme is bound has no bearing on further binding (Weiss, 1997).

The Hill equation is shown below:
, where [L] is concentration of the ligand (in our case, the inhibitor), Kd is the dissociation constant, and n is the Hill coefficient.

Mouse Inhibitor Serpina3n vs GzmB Activity

Our first dataset (Table 1), which measures Serpina3n concentration vs relative GzmB activity, came from research by Ang et al. at the University of British Columbia (2011). Serpina3n is a known mouse GzmB inhibitor, and the paper documented the effects of Serpina3n on GzmB activity. Given its specificity in mice, this inhibitor was not chosen as part of the final construct, but data from this paper was used because the relevant constants can be analyzed and compared to other inhibitor substitutes.

Table 1: Dataset obtained from Ang et al., showing Serpina3n Concentration vs Relative GzmB Activity
[Sa3n] (nM) 0.4 1.4 2.8 3.8 5 7.8 10 16 21 40 80
Relative GzmB Activity (%) 118 110 115 102 78 76 65 56 39 15 4

Several adjustments were made to the equation and dataset so that we could have a meaningful model. First, GzmB activity was shown as percentages ranging from 10% to 120% in the paper. This is likely because the control for the experiment was set at some point where the Serpina3n expression is not 0. Thus, we scaled down the data points by a factor of 1/120. This scaling is necessary since the Hill equation returns a fraction; the output is limited to between 0 and 1.

More importantly, since the data was presented as the concentration of enzymes that remain free after binding, we needed to modify the Hill equation in order to model the fraction of unbound GzmB. Since bound + unbound = 100%, and the Hill equation models the bound component, it can be said that , provided that the dataset is properly scaled to a range between 100%-0%.

The FindFit function of Mathematica was used to find the unknown constants Kd and n for the modified Hill equation above. Our model returned a Kd of ≈ 28.130 and n ≈ 1.3540. The final equation is , where θfree is GzmB activity and [L] stands for concentration of Serpina3n (Figure 1).

Figure 1. Model: Serpina3n Inhibition of GzmB. Using data from the Ang et al. paper, we developed an equation that models relative GzmB Activity as a function of Serpina3n concentration

Human GzmB Inhibitor ACT3m

Given our model of Serpina3n, we also wanted to create a model for the protein used in our device, ACT3m. The dataset obtained from the ACT3m paper (Marcet-Palacios et al., 2014) is the result of a colorimetric assay. Data was presented as absorbance values (A405), which correspond to the concentration of free GzmB, at different inhibitor concentrations. The paper used this to prove that their novel ACT3m inhibitor was the strongest out of their entire pool of possible candidates: treatment with ACT3m resulted in the lowest A405 values, which suggests the strongest inhibition of GzmB.

To model this set of data, similar adjustments had to be made. First, the dataset was scaled so the numbers ranged between 0 and 1 (in this case, increased by a factor of 2). The same modified Hill equation was used from the Serpina3n analysis. Our model returned a Kd of ≈ 13.336 and n ≈ 0.605, so the equation looks like (Figure 2).

Figure 2. Model: ACT3m Inhibition of GzmB. Using data from the Marcet-Palacios et al. paper, we developed an equation that models relative GzmB activity as a function of ACT3m concentration.concentration.

Analysis

Table 2. Values Returned from Model: the dissociation, association and Hill constants were calculated using Mathematica.
Kd (nM) Ka (nM^-1) n
Sa3n 28.130 0.035549 1.3540
ACT3m 13.336 0.074985 0.60462

To interpret the above data, we first compare the constants of dissociation, Kd. In this context, Kd represents [Gzmbfree][Inhibitor]/[Gzmbinhib-Inhibitor] at equilibrium (Bisswanger, 2008); therefore, a lower Kd would represent better inhibition: more bound GzmB compared to free GzmB.

We can also analyze the Ka, the association constant. Ka is the inverse of Kd, and can be found as [Gzmbinhib-Inhibitor]/ [Gzmbfree][Inhibitor]. This represents the relative amount of bound molecules, so that a higher Ka represents stronger binding affinity. Compared to the mouse inhibitor Serpina3n, human ACT3m has a lower Kd and a higher Ka, which suggests stronger inhibition. This conclusion is in agreement with Marcet-Palacios et al., where this novel inhibitor was also compared to mouse Serpina3n (2014).

The Hill constant may also be considered to analyze the nature of the inhibitor-GzmB complex. With n>1, Serpina3n is likely to bind to multiple sites on GzmB (Weiss et al., 1997). ACT3m, in contrast, has a n<1, meaning that it likely binds competitively to selective and perhaps singular sites. This information is interesting; taking the association constants into account, this means that despite less opportunity to bind, ACT3m still acts as a better inhibitor than Serpina3n.

Inhibitor Concentration Calculator


The following equations were developed with a question in mind:

How much inhibitor is needed to bring GzmB levels back to normal?


Since there are many diseases that cause inflammation, and thus increased levels of GzmB, we created a calculator to determine the amount of treatment needed for any GzmB-related diseases. The model can show the relative percent decrease of GzmB as the inhibitor concentration increases. A patient could obtain information regarding their condition and calculate the amount of treatment needed.

Given that , reversing the parameters yields the equivalent function of , or . This equation calculates the inhibitor concentration that corresponds to a certain relative level of GzmB.

Rheumatoid arthritis (RA) is one of the main chronic inflammatory diseases made worse by elevated GzmB activity. We will use this as an example to show how the calculator works. GzmB concentrations in synovial fluids (joint fluids) of arthritis patients were determined from Tak et al., 2009 (summarized in Table 3). There is a significant GzmB concentration difference between the control group and RA patients. The equation that returns a concentration of inhibitor can be used here, as it takes in relative GzmB levels and returns the amount of inhibitor needed.

Table 3: GzmB Concentration in Synovial Fluids. GzmB concentration in patients suffering from rheumatoid arthritis obtained from Tak et al., 2009.
Rheumatoid arthritis (pg/mL) Control (pg/mL)
Mean +/- s.d. 3306 +/- 10311 34 +/- 32
Median 251 29

If a patient has a GzmB level that is X times the amount of control (around 34 pg/mL), then proportionally, X/100% = 100%/Y, where Y is the factor we want to decrease the patient’s level by (relative to his original level). Therefore, , and the amount of inhibitor needed [L] can be calculated. For example, if an RA patient has a GzmB concentration of 3400 pg/mL, then the patient has about 100x the normal GzmB level. Therefore, the Y factor would be 1%, and [L] can be calculated to be around 130 uM.

It should be noted, however, that there is a large standard deviation for GzmB levels in RA patients, which means there are significant variations: if treatments are to be given, it would be better to conduct treatments on a case-by-case basis.

CALCULATOR

Patient's GzmB level is % of original
Treatment ([L]) :        nM of ACT

Bandage Flux Model

Now that we know how to calculate the amount of treatment necessary, we can estimate how we apply our prototype to deliver the appropriate amount of treatment.

Fick’s first law dictates that , where J is the diffusion rate (flux) across the membrane (Lonsdale et al.). This models negative flux entering a closed surface. For our model, we want to model the flux that leaves the closed surface, which is our bandage. Thus, we use the model , where J is a positive flux.

[Concentration] is the concentration of molecules inside the bandage, in our case the GzmB inhibitor. The thickness of the membrane is inversely related to J. D is the diffusivity, or the diffusion constant, of a certain configuration – a greater D generally represents a greater rate of diffusion. In our model, the diffusivity of our cellulose ester membrane was found to be 5.7x10^-6 cm^2/sec. Therefore, our diffusion model is .

When graphed, the 3-dimensional equation looks like Figure 3 below:

Figure 3. Flux relative to concentration and membrane thickness. Fick's first law was used to predict the rate of flow across the membrane.

As demonstrated by the graph, thickness is inversely related to the diffusion rate; on the other hand, concentration is directly related to the diffusion rate. As part of future work, we can try to combine this model with the calculator to find proper treatment concentration, perhaps mathematically integrating the flux to determine an effective concentration that the bandage delivers. However, this would likely require experimental data to verify the accuracy of our current models.

Citations

Weiss, J. (1997). The Hill equation revisited: Uses and misuses. Faseb J, 11(11), 835-841. Retrieved September 5, 2015, from Pubmed.

Ang, L., Boivin, W., Williams, S., Zhao, H., Abraham, T., Carmine-Simmen, K., Granville, D. (2011). Serpina3n attenuates granzyme B-mediated decorin cleavage and rupture in a murine model of aortic aneurysm. Cell Death Dis Cell Death and Disease.

Marcet-Palacios, M., Ewen, C., Pittman, E., Duggan, B., Carmine-Simmen, K., Fahlman, R., & Bleackley, R. (2014). Design and characterization of a novel human Granzyme B inhibitor. Protein Engineering Design and Selection, 9-17.

Bisswanger, H. (2008). Enzyme kinetics: Principles and methods (2nd rev. and updated ed.). Weinheim: Wiley-VCH.

Tak PP, Spaeny-Dekking L, Kraan MC, Breedveld FC, Froelich CJ, Hack CE. The levels of soluble granzyme A and B are elevated in plasma and synovial fluid of patients with rheumatoid arthritis (RA). Clinical and Experimental Immunology. 1999;116(2):366-370. doi:10.1046/j.1365-2249.1999.00881.x.

Vaughan, M. (1959). Cellulose Acetate Membranes suitable for Osmotic Measurements. Nature, 43-44.