Difference between revisions of "Team:Jilin China/Model"

Line 14: Line 14:
 
<section class="section-wrap">
 
<section class="section-wrap">
 
<div class="section section-2" id="ob1">
 
<div class="section section-2" id="ob1">
<!--<div class="content-fixed"><object data="https://static.igem.org/mediawiki/2016/3/3b/Ecological_model_of_solid_tumor_tissue_with_bifidobacteria.pdf" width="60%" height="100%" align="middle" style="margin:-1% 20% 0 20%">       -->
+
<!--<div class="content-fixed"><object data="https://static.igem.org/mediawiki/2016/3/3b/Ecological_model_of_solid_tumor_tissue_with_bifidobacteria.pdf" width="60%" height="100%" align="middle" style="margin:-1% 20% 0 20%"> -->    
 
</object>  </div>
 
</object>  </div>
 
</div>
 
</div>
Line 130: Line 130:
 
<p class="tit">Model</p>
 
<p class="tit">Model</p>
 
                         <div class="content">
 
                         <div class="content">
                 <p></p>
+
                 <p><span>2.2 Bifidobacteria-tumor cells relation model</span></p>
</div><div class="little"></div>
+
                <p>When the genetically engineered bifidobacteria is introduced into the tumor tissues, they secrete apoptin to induce the apoptosis of tumor cells. For tumor cells, bifidobacterium is as a predator in the tissue ecosystem. However, bifidobacterium is strictly anaerobic bacterium. When tumor cell population decreases, which is likely to cause the increasing of oxygen concentration in tissues, the growth of bifidobacterium is suppressed. Therefore, the relation between bifidobacteria and tumor cells is more likely to be a parasitic relation. Based on the Holling Ⅱ Type Functional Reacting Model, we establish a differential equations as follows.</p>
                        <div class="little" style="width:25%; float:left; margin-left:10%">Tmp1:<img src=""  style=" padding:2px; border:2px solid rgba(242,255,195,1.00); margin-top:1%; max-width:100%;">
+
</div><div class="little">x_1: the population of tumor cells</br>x_2: the population of bifidobacteria</br>
                        </div>
+
The definitions of the parameters can be found in the link: (Get more information about our ecological models…)
                         <div class="little" style="width:25%; float:right; margin-right:10%">Sec:<img src=""  style=" padding:2px; border:2px solid rgba(242,255,195,1.00); margin-top:1%; max-width:100%;">
+
</div>
 +
                         <div class="little" style="width:25%; float:left; margin-left:10%"><img src="https://static.igem.org/mediawiki/2016/d/dc/T--Jilin_China--md-14.png"  style=" padding:2px; border:2px solid rgba(242,255,195,1.00); margin-top:1%; max-width:100%;">
 
                         </div>
 
                         </div>
 
</div>
 
</div>
Line 143: Line 144:
 
<p class="tit">Model</p>
 
<p class="tit">Model</p>
 
                         <div class="content">
 
                         <div class="content">
                 <p></p>
+
                 <p><span></span></p>
</div>
+
                <p>In this model, with the appropriate parameter, bifidobacteria can reduce the amount of tumor cells at the beginning. However, the population of bifidobacteria gradually drop as population of tumor cells decreases at the late phase, which indicates that bifidobacteria will not stay in the body ecosystem very long after tumor cells are eliminated.</p>
 +
</div><div class="little">Figure7: The population curve of bifidobacteria and tumor cells. the tumor cells slowly increase at early time. As the population of bifidobacteria rising, the population of tumor cells declined sharply, then the population of bifidobacteria goes down after it get to the maximum value. Finally, the population of bifidobacteria and tumor cells tend to zero.</div>
 +
                        <div class="little" style="width:25%; float:left; margin-left:10%">The image of the differential equations above:<img src=""  style=" padding:2px; border:2px solid rgba(242,255,195,1.00); margin-top:1%; max-width:100%;">
 +
                        </div>
 
</div>
 
</div>
 +
                       
 
</div>
 
</div>
 
<div class="section section-3">
 
<div class="section section-3">
Line 151: Line 156:
 
<p class="tit">Model</p>
 
<p class="tit">Model</p>
 
                         <div class="content">
 
                         <div class="content">
 +
                <p><span>2.3 Tumor cell - bifidobacterium-somatic cell model</span></p>
 +
                <p>This model estimates the population curve of tumor cells and somatic cells after bifidobacteria are introduced into the tissue. We consider the tumor tissue as a homogeneous environment, which contains a great number of tumor cells and a small number of somatic cells. When a small amount of genetically engineered bifidobacteria parasitize in such tumor tissue, the relations among these three kinds of cells can be summarized as follows</p>
 +
                <p>(1) Tumor cells compete with somatic cells, and bifidobacteria prey on tumor cells.</p>
 +
                <p>(2) Bifidobacteria compete with somatic cells, restricted by oxygen.</p>
 +
                <p>(3) Somatic cells compete with tumor cells and bifidobacteria.</p>
 
                 <p></p>
 
                 <p></p>
 +
</div><div class="little"></div>
 +
                        <div class="little" style="width:25%; float:left; margin-left:10%">Tmp1:<img src=""  style=" padding:2px; border:2px solid rgba(242,255,195,1.00); margin-top:1%; max-width:100%;">
 +
                        </div>
 +
                        <div class="little" style="width:25%;  float:right; margin-right:10%">Sec:<img src=""  style=" padding:2px; border:2px solid rgba(242,255,195,1.00); margin-top:1%; max-width:100%;">
 +
                        </div>
 
</div>
 
</div>
</div>
+
                       
 
</div>
 
</div>
 
<div class="section section-3">
 
<div class="section section-3">
Line 159: Line 174:
 
<p class="tit">Model</p>
 
<p class="tit">Model</p>
 
                         <div class="content">
 
                         <div class="content">
 +
                <p><span></span></p>
 
                 <p></p>
 
                 <p></p>
 +
</div><div class="little"></div>
 +
                        <div class="little" style="width:25%; float:left; margin-left:10%">Tmp1:<img src=""  style=" padding:2px; border:2px solid rgba(242,255,195,1.00); margin-top:1%; max-width:100%;">
 +
                        </div>
 +
                        <div class="little" style="width:25%;  float:right; margin-right:10%">Sec:<img src=""  style=" padding:2px; border:2px solid rgba(242,255,195,1.00); margin-top:1%; max-width:100%;">
 +
                        </div>
 
</div>
 
</div>
</div>
+
                       
 
</div>
 
</div>
 
<div class="section section-3">
 
<div class="section section-3">
Line 167: Line 188:
 
<p class="tit">Model</p>
 
<p class="tit">Model</p>
 
                         <div class="content">
 
                         <div class="content">
 +
                <p><span></span></p>
 
                 <p></p>
 
                 <p></p>
 +
</div><div class="little"></div>
 +
                        <div class="little" style="width:25%; float:left; margin-left:10%">Tmp1:<img src=""  style=" padding:2px; border:2px solid rgba(242,255,195,1.00); margin-top:1%; max-width:100%;">
 +
                        </div>
 +
                        <div class="little" style="width:25%;  float:right; margin-right:10%">Sec:<img src=""  style=" padding:2px; border:2px solid rgba(242,255,195,1.00); margin-top:1%; max-width:100%;">
 +
                        </div>
 
</div>
 
</div>
</div>
+
                       
 
</div>
 
</div>
 
<div class="section section-3">
 
<div class="section section-3">
Line 175: Line 202:
 
<p class="tit">Model</p>
 
<p class="tit">Model</p>
 
                         <div class="content">
 
                         <div class="content">
 +
                <p><span></span></p>
 
                 <p></p>
 
                 <p></p>
 +
</div><div class="little"></div>
 +
                        <div class="little" style="width:25%; float:left; margin-left:10%">Tmp1:<img src=""  style=" padding:2px; border:2px solid rgba(242,255,195,1.00); margin-top:1%; max-width:100%;">
 +
                        </div>
 +
                        <div class="little" style="width:25%;  float:right; margin-right:10%">Sec:<img src=""  style=" padding:2px; border:2px solid rgba(242,255,195,1.00); margin-top:1%; max-width:100%;">
 +
                        </div>
 
</div>
 
</div>
</div>
+
                          
</div>
+
<div class="section section-3">
+
<div class="title">
+
<p class="tit">Model</p>
+
                         <div class="content">
+
                <p></p>
+
</div>
+
</div>
+
</div>
+
<div class="section section-3">
+
<div class="title">
+
<p class="tit">Model</p>
+
                        <div class="content">
+
                <p></p>
+
</div>
+
</div>
+
</div>
+
<div class="section section-3">
+
<div class="title">
+
<p class="tit">Model</p>
+
                        <div class="content">
+
                <p></p>
+
</div>
+
</div>
+
 
</div>
 
</div>
 
</section>
 
</section>

Revision as of 07:26, 19 October 2016

Particles

Model

In the modeling parts, we use bioinformatics tools (SignalP 4.1 Server, TMpred program and TMHMM) to assess the ability of Tmp1 and Sec2 to deliver apoptin across the cell membrane and simulate the three-dimensional structure of our proteins. Besides, we have applied two ecological models to study the interspecies relation between tumor cells and somatic cells, as well as the interspecies relation between tumor cells and bifidobacteria. Finally, we have established an ecological model to estimate the population curve of tumor cells and somatic cells when bifidobacteria are introduced into the tissue.

1.Models of signal peptides and protein structures

Prediction of signal peptides:

Through literature searching, we have identified two signal peptides, Tmp1 and Sec2, which might have the potential to facilitate the transmembrane of apoptin, and multiple bioinformatics tools have been applied to assess the ability of Tmp1 and Sec2 to deliver apoptin across the cell membrane (Figure 1).

Figure 1. The amino acid sequence of Tmp1 and Sec2

Model

First, the presences of signal peptides and the location of signal peptide cleavage sites in Tmp1 and Sec2 are analyzed with the SignalP 4.1 Server. According to the analysis, the Tmp1 and Sec2 sequences that we chose are indeed signal peptides, which could deliver proteins across the cell membrane. Moreover, the location of cleavage sites in Tmp1 is between amino acid 26 and 27, and the location of cleavage site in Sec2 is between amino acid 34 and 35 (Figure 2).

Figure 2. Analysis of the presences of signal peptides in Tmp1 and Sec2 with the SignalP 4.1 Server
Tmp1:
Sec:

Model

Next, the membrane-spanning regions and their orientation in Tmp1 and Sec2 were identified with TMpred program. Since the presence of transmembrance helixes is a classical feature of signal peptides, the presence of such structure in Tmp1 and Sec2 should be helpful to deliver apoptin across cell membranes. According to the results from TMpred analysis, Tmp1 and Sec2 both have possible transmembrane helixes. For Tmp1, the possible transmembrane helix is from amino acid 18 to 36. For Sec2, the possible transmembrane helix is from amino acid 12 to 28. Furthermore, the orientation of transmembrane for Tmp1 and Sec2 is predicted to be from bifidobacterium to extracellular environment (Figure 3).

Figure 3. Analysis of transmembrane-spanning regions in Tmp1 and Sec2 with the TMpred program
Tmp1:
Sec:

Model

In addition, the hydrophobic domains in Tmp1 and Sec2 were analyzed with the TMHMM. Theoretically, all signal peptides should have highly hydrophobic domains. Therefore, presence of the hydrophobic domain of proteins is another important feature of signal peptides. The results from the analysis show that both Tmp1 and Sec2 have hydrophobic domains (Figure 4).

Figure 4. Analysis of hydrophobic domains in Tmp1 and Sec2 with the TMHMM
Tmp1:
Sec:

In summary, Tmp1 and Sec2 have multiple features as signal peptides that should have the ability to deliver apoptin across the cell membrane.

Model

1.2 Prediction of protein structures:

The protein structures of Tmp1-TAT-Linker-apoptin and Sec2-TAT-Linker-apoptin were constructed and simulated by the Phyre2 web portal and Hyperchem 8.0 for Molecular Dynamic Simulation. The Tmp1 and Sec2 domains are well separated from apoptin domain, which indicates that apoptin should not interference the function of Tmp1 and Sec2 as signal peptides.

Tmp1-TAT-Linker-apoptin:
Sec2-TAT-Linker-apoptin:

2.Ecological Models

(Get more)

We assume that a part of human’s tissue can be considered as a miniature ecosystem, and tumor cells, normal somatic cells and bifidobacteria are three different species in such ecosystem. While normal somatic cells of the tissue can be viewed as the original species of the ecosystem, tumor cells can be treated as an invasive species. Based on the Lotka-Volterra Model, we can apply an ecology model to analyze the competition relation between tumor cells and somatic cells, and show the curve of population change with time. Based on the Holling Ⅱ Type Functional Reacting Model, we can apply an ecology model to study the predation relation between tumor cells and bifidobacteria, and show the curve of population change with time. Combining all of the relations among tumor cells, bifidobacteria and somatic cells, we can establish an ecological model to estimate the curves of population change of tumor cells and somatic cells when bifidobacteria are introduced into the tissue.

Model

2.1 The somatic cells - tumor cells relation model

Considering that the tumor cells act as an invasive species in the ecosystem and compete with somatic cell for resources, the competition model is an appropriate model to simulate the relation between tumor cells and somatic cells. Based on the Lotka-Volterra Model, we set〖 x〗_1 as the population of tumor cells, x_3 as the population of somatic cells. The differential equations show as follows.

The definitions of the parameters can be found in the link: (get more information about our ecological models…)

Model

The modeling result shows that when ecological system is healthy, and the immune system can limit environmental capacity of tumor cells (N_1 in the equations above) in a low scope, somatic cells is the dominant species in body ecosystem, and tumors cannot expand. When the body ecosystem is defected and the body's immune system is weak, the value of N_1 increases and somatic cells have a lower survival advantage than tumor cell. Gradually, the number of somatic cells will decrease, and tumor cells become the dominant species. In that case, tumors expand.

Figure6: The population of tumor cells and somatic cells changes when the body's immune system is weak. Tumor cells become the dominant species
The image of the differential equations above:

Model

2.2 Bifidobacteria-tumor cells relation model

When the genetically engineered bifidobacteria is introduced into the tumor tissues, they secrete apoptin to induce the apoptosis of tumor cells. For tumor cells, bifidobacterium is as a predator in the tissue ecosystem. However, bifidobacterium is strictly anaerobic bacterium. When tumor cell population decreases, which is likely to cause the increasing of oxygen concentration in tissues, the growth of bifidobacterium is suppressed. Therefore, the relation between bifidobacteria and tumor cells is more likely to be a parasitic relation. Based on the Holling Ⅱ Type Functional Reacting Model, we establish a differential equations as follows.

x_1: the population of tumor cells
x_2: the population of bifidobacteria
The definitions of the parameters can be found in the link: (Get more information about our ecological models…)

Model

In this model, with the appropriate parameter, bifidobacteria can reduce the amount of tumor cells at the beginning. However, the population of bifidobacteria gradually drop as population of tumor cells decreases at the late phase, which indicates that bifidobacteria will not stay in the body ecosystem very long after tumor cells are eliminated.

Figure7: The population curve of bifidobacteria and tumor cells. the tumor cells slowly increase at early time. As the population of bifidobacteria rising, the population of tumor cells declined sharply, then the population of bifidobacteria goes down after it get to the maximum value. Finally, the population of bifidobacteria and tumor cells tend to zero.
The image of the differential equations above:

Model

2.3 Tumor cell - bifidobacterium-somatic cell model

This model estimates the population curve of tumor cells and somatic cells after bifidobacteria are introduced into the tissue. We consider the tumor tissue as a homogeneous environment, which contains a great number of tumor cells and a small number of somatic cells. When a small amount of genetically engineered bifidobacteria parasitize in such tumor tissue, the relations among these three kinds of cells can be summarized as follows

(1) Tumor cells compete with somatic cells, and bifidobacteria prey on tumor cells.

(2) Bifidobacteria compete with somatic cells, restricted by oxygen.

(3) Somatic cells compete with tumor cells and bifidobacteria.

Tmp1:
Sec:

Model

Tmp1:
Sec:

Model

Tmp1:
Sec:

Model

Tmp1:
Sec:
«