Difference between revisions of "Team:Slovenia/Description"

Line 2: Line 2:
 
<html>
 
<html>
 
<head>
 
<head>
     <title>Description</title>
+
     <title>Protease inducible secretion</title>
 
     <link rel="stylesheet"
 
     <link rel="stylesheet"
 
           href="//2016.igem.org/Team:Slovenia/libraries/semantic-min-css?action=raw&ctype=text/css">
 
           href="//2016.igem.org/Team:Slovenia/libraries/semantic-min-css?action=raw&ctype=text/css">
Line 15: Line 15:
 
     <script type="text/javascript"
 
     <script type="text/javascript"
 
             src="https://2016.igem.org/Team:Slovenia/libraries/bibtexparse-js?action=raw&ctype=text/javascript"></script>
 
             src="https://2016.igem.org/Team:Slovenia/libraries/bibtexparse-js?action=raw&ctype=text/javascript"></script>
     <style>
+
     <!-- MathJax (LaTeX for the web) -->
         .container {
+
    <script type="text/x-mathjax-config">
             position: relative;
+
         MathJax.Hub.Config({
        }
+
             tex2jax: {
 
+
                inlineMath: [['$', '$'], ['\\(', '\\)']]
        .module1 {
+
             },
            position: absolute;
+
             jax: ["input/TeX","output/SVG"],
             top: 220px;
+
             TeX: {
            left: 10px;
+
                extensions: ["mhchem.js"],
        }
+
                equationNumbers: {autoNumber: "all" },
 
+
                Macros: {
        .module2 {
+
                  goodbreak: '\\mmlToken{mo}[linebreak="goodbreak"]{}',
             position: absolute;
+
                  badbreak: ['\\mmlToken{mo}[linebreak="badbreak"]{#1}',1],
             bottom: 90px;
+
                  nobreak: ['\\mmlToken{mo}[linebreak="nobreak"]{#1}',1],
            left: 220px;
+
                  invisibletimes: ['\\mmlToken{mo}{\u2062}']
        }
+
                }
 
+
             },
        .module3 {
+
             CommonHTML: { linebreaks: { automatic: true, width: "75% container" } },
            position: absolute;
+
             "HTML-CSS": { linebreaks: { automatic: true, width: "68% container" }},
            top: 180px;
+
             SVG: { linebreaks: { automatic: true, width: "200% container" }}
            right: 350px;
+
         });
        }
+
   
 
+
   
        .module4 {
+
    </script>
            position: absolute;
+
    <script type="text/javascript" async
            bottom: 15px;
+
             src="//2016.igem.org/common/MathJax-2.5-latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
            right: 380px;
+
     </script>
        }
+
 
+
        .igemSign {
+
            position: relative;
+
            bottom: 50px;
+
        }
+
 
+
        /* Popup container - can be anything you want */
+
        .popup {
+
            display: inline-block;
+
            cursor: pointer;
+
            -webkit-user-select: none;
+
            -moz-user-select: none;
+
            -ms-user-select: none;
+
            user-select: none;
+
            padding: 10px 10px;
+
        }
+
 
+
        /* The actual popup */
+
        .popup .popuptext {
+
            padding: 10px 10px;
+
            visibility: hidden;
+
            width: 350px;
+
            background-color: #555;
+
            color: #fff;
+
            text-align: center;
+
             border-radius: 6px;
+
             position: absolute;
+
            z-index: 100;
+
            font-size: 12px;
+
            line-height: 18px;
+
        }
+
 
+
        /* Toggle this class - hide and show the popup */
+
        .popup .show {
+
             visibility: visible;
+
            -webkit-animation: fadeIn 1s;
+
            animation: fadeIn 1s;
+
        }
+
 
+
        /* Add animation (fade in the popup) */
+
        @-webkit-keyframes fadeIn {
+
            from {
+
                opacity: 0;
+
            }
+
            to {
+
                opacity: 1;
+
            }
+
        }
+
 
+
        @keyframes fadeIn {
+
             from {
+
                opacity: 0;
+
            }
+
            to {
+
                opacity: 1;
+
            }
+
         }
+
 
+
        .container img {
+
            display: block;
+
            margin-left: auto;
+
             margin-right: auto;
+
        }
+
 
+
        .corners {
+
            border-radius: 15px;
+
            border: 2px solid #000000;
+
            padding: 15px;
+
            margin-left: 15px;
+
            margin-bottom: 15px;
+
        }
+
 
+
     </style>
+
 
</head>
 
</head>
 
<body>
 
<body>
<script>
 
    $(document).ready(
 
            function () {
 
                var getImgs = function () {
 
                    var imgs = [];
 
                    $('img').each(function () {
 
                        console.log("image detected");
 
                        var data = $(this).data('alt');
 
                        imgs.push(data);
 
                    });
 
                    return imgs;
 
                };
 
                var imgs = getImgs();
 
                //preload images
 
                var image = [];
 
                $.each(imgs, function (index) {
 
                    console.log("loading resource");
 
                    image[index] = new Image();
 
                    image[index].src = imgs[index];
 
                });
 
            }
 
    );
 
    function loadImage(sourceImage, popupname) {
 
        console.log(sourceImage);
 
        var image = document.getElementById("projectScheme");
 
        image.src = sourceImage;
 
  
        //var rect = image.getBoundingClientRect();
 
        //console.log(rect.top, rect.right, rect.bottom, rect.left);
 
 
        var popup = document.getElementById(popupname);
 
        //popup.style.top = ((rect.bottom - rect.top)/2).toString().concat("px");
 
        //popup.style.left =  ((rect.right - rect.left)/2).toString().concat("px");
 
        //console.log((rect.right - rect.left)/2, (rect.bottom - rect.top)/2);
 
        popup.classList.toggle('show');
 
    }
 
    function tooglePopup() {
 
        var popup = document.getElementById("igemSign");
 
        popup.classList.toggle('show');
 
    }
 
</script>
 
  
 
<div id="example">
 
<div id="example">
Line 168: Line 54:
 
                 </a>
 
                 </a>
 
                 <div class="ui vertical sticky text menu">
 
                 <div class="ui vertical sticky text menu">
                     <a class="item" href="//2016.igem.org/Team:Slovenia" style="color:#DB2828;">
+
                     <a class="item" href="//2016.igem.org/Team:Slovenia/CoiledCoilInteraction">
                         <i class="selected radio icon"></i>
+
                         <i class="chevron circle left icon"></i>
                         <b>Home</b>
+
                         <b>CC interaction model</b>
 
                     </a>
 
                     </a>
                    <a class="item" href="#intro" style="margin-left: 10%">
+
                  <a class="item" href="//2016.igem.org/Team:Slovenia/Demonstrate" style="color:#DB2828;">
 
                         <i class="selected radio icon"></i>
 
                         <i class="selected radio icon"></i>
                         <b>Project</b>
+
                         <b>Protease-based</b> <br />
 +
<b style="margin-left: 12%">inducible secretion</b>
 
                     </a>
 
                     </a>
                     <a class="item" href="#experts" style="margin-left: 10%">
+
                     <a class="item" href="#ach" style="margin-left: 10%">
                        <i class="selected radio icon"></i>
+
                        <b>Abstract for experts</b>
+
                    </a>
+
                    <a class="item" href="#plain" style="margin-left: 10%">
+
                        <i class="selected radio icon"></i>
+
                        <b>Abstract in plain English</b>
+
                    </a>
+
                    <a class="item" href="#achievements" style="margin-left: 10%">
+
 
                         <i class="selected radio icon"></i>
 
                         <i class="selected radio icon"></i>
 
                         <b>Achievements</b>
 
                         <b>Achievements</b>
 
                     </a>
 
                     </a>
                     <a class="item" href="#requirements" style="margin-left: 10%">
+
                     <a class="item" href="#intro" style="margin-left: 10%">
 
                         <i class="selected radio icon"></i>
 
                         <i class="selected radio icon"></i>
                         <b>Medal requirements</b>
+
                         <b>Introduction</b>
 
                     </a>
 
                     </a>
<a class="item" href="#imp" style="margin-left: 10%">
+
                    <a class="item" href="#lum" style="margin-left: 10%">
 
                         <i class="selected radio icon"></i>
 
                         <i class="selected radio icon"></i>
                         <b>Part improvement</b>
+
                         <b>ER lumen</b>
 
                     </a>
 
                     </a>
                     <a class="item" href="//2016.igem.org/Team:Slovenia/Idea/Challenge">
+
                    <a class="item" href="#mem" style="margin-left: 10%">
 +
                        <i class="selected radio icon"></i>
 +
                        <b>ER membrane</b>
 +
                    </a>
 +
                     <a class="item" href="//2016.igem.org/Team:Slovenia/Proof">
 
                         <i class="chevron circle right icon"></i>
 
                         <i class="chevron circle right icon"></i>
                         <b>Idea</b>
+
                         <b>Touch painting</b>
 
                     </a>
 
                     </a>
                    <span>
+
<span>
<br/>
+
<br />
</span>
+
</span>
                    <img onmouseenter="tooglePopup();" onmouseleave="tooglePopup();" class="ui large circular image" src="//2016.igem.org/wiki/images/c/cb/T--Slovenia--igemLogo.gif">
+
<a href = "//2016.igem.org/Team:Slovenia/Proof"><img onmouseenter="tooglePopup();" onmouseleave="tooglePopup();" class="ui large circular image" src="//2016.igem.org/wiki/images/6/67/T--Slovenia--iGEM-gif.gif"></a>
                    <!-- <p style="font-size:11px;">
+
                 </div>
                            Touchpaint - detecting touch by light. The iGEM symbol was drawn with a glass rod letter by letter on engineered human cells and imaged by a camera.
+
                            Cells were transfected with constructs coding for the bacterial ion channel MscS, gas vesicles (GvpA and GvpC) to enhance mechanosensing and a Ca-dependent
+
                            cyclic split luciferase reporter to visualize the signal by light.
+
                    </p> -->
+
                    <div class="popup igemSign">
+
<span class="popuptext" id="igemSign">Touchpaint - detecting touch by light. The iGEM symbol was drawn with a glass rod letter by letter on engineered human cells and imaged by a camera.
+
Cells were transfected with constructs coding for the bacterial ion channel MscS, gas vesicles (GvpA and GvpC) to enhance mechanosensing and a Ca-dependent
+
                            cyclic split luciferase reporter to visualize the signal by light.</span>
+
                    </div>
+
                 </div>  
+
  
             </div>  
+
             </div>
 
             <div class="article" id="context">
 
             <div class="article" id="context">
 
                 <!-- menu goes here -->
 
                 <!-- menu goes here -->
 
                 <!-- content goes here -->
 
                 <!-- content goes here -->
                 <div class="main ui citing justified container">
+
                 <div>
                    <div>
+
                    <div class="main ui citing justified container">
                        <h1 class="ui centered dividing header"><span id="intro" class="section colorize"> &nbsp; </span>Sonicell
+
<div>
                        </h1>
+
<h1 class="ui left dividing header"><span id="ach" class="section colorize">&nbsp;</span>Protease-based inducible
 +
secretion</h1>
 +
 
 +
<div class="ui segment" style="background-color: #ebc7c7;">
 +
 +
<p><b>
 +
<ul>
 +
<li>Retention of proteins in ER lumen was demonstrated by confocal microscopy and
 +
detection of the protein in the cell medium.
 +
<li>A variant of TEVp active in the ER lumen was implemented to control protein
 +
secretion from the ER lumen.
 +
<li>Retention of proteins on the ER membrane was also demonstrated by confocal
 +
microscopy and detection of the protein in the cell medium.
 +
<li>Rapamycin induced cleavage was used for controlled and inducible secretion of
 +
proteins from the ER membrane.
 +
</ul>
 +
</b></p>
 +
</div>
 +
                        </div>
 
                         <div class="ui segment">
 
                         <div class="ui segment">
                             <p>Project Sonicell introduces exciting foundational advances to synthetic biology aimed to
+
<div>
                                enable rapid cellular response to a combination of external stimuli such as sound, light
+
<h4><span id = "intro" class="section colorize">&nbsp;</span></h4>
                                 or chemical compounds. This system is composed of a module for <b>enhanced sensitivity of
+
                             <p>To achieve a fast regulated cellular response resulting in the protein release, we
                                 cells to ultrasound or other mechanical stimuli</b>, sensed by a calcium-dependent reporter,
+
                                 decided to mimic the release of insulin from beta cells where the protein of
                                 and a module for integration of a combination of several input signals into a <b>signaling
+
                                 interest is pre-formed and present intracellularly in secretory granules. In contrast to the
                                 pathway based on proteolysis </b> by a collection of orthogonal proteases. Finally, the proteases were
+
                                 specialized storage and release mechanism of insulin from beta cells we wanted to
                                 designed to cleave an endoplasmic reticulum retention signal from target proteins, which
+
                                develop a more general and modular solution by making use of components already existing
                                 results in <b>secretion of premade proteins</b>.</p>
+
                                 in different types of cells. Additionally, there should be minimal leakage from the
                             <div>
+
                                 protein depot in the uninduced state and after induction secretion from the cell should
                                <div class="container">
+
                                 be fast.</p>
                                    <img width="100%" onresize="relativeCoords();" onload="relativeCoords();"
+
 
                                        style="border-radius: 15px;"
+
                             <div class="ui styled fluid accordion">
                                        src="//2016.igem.org/wiki/images/c/c2/T--Slovenia--Main-scheme0.png"
+
                                <div class="title">
                                        alt="project scheme" usemap="#projectmap" id="projectScheme"/>
+
                                     <i class="dropdown icon"></i>
                                     <map name="projectmap">
+
                                    Further explanation ...
                                        <area id="area1" class="popup" shape="poly" coords="" alt="module1"
+
                                </div>
                                              onmouseover="loadImage('//2016.igem.org/wiki/images/9/92/T--Slovenia--Main-scheme1.png', 'module1')"
+
                                <div class="content">
                                              onmouseout="loadImage('//2016.igem.org/wiki/images/c/c2/T--Slovenia--Main-scheme0.png', 'module1')"
+
                                    <p> Not many systems for the inducible release of proteins have been engineered to
                                              href="//2016.igem.org/Team:Slovenia/Mechanosensing/Overview">
+
                                        date. In one of the few examples Rivera et al. developed a system where the
                                        <area id="area2" class="popup" shape="poly" coords="" alt="module1"
+
                                        protein of interest
                                              onmouseover="loadImage('//2016.igem.org/wiki/images/5/54/T--Slovenia--Main-scheme3.png', 'module2')"
+
                                        was fused to a conditional aggregation domain (CAD)
                                              onmouseout="loadImage('//2016.igem.org/wiki/images/c/c2/T--Slovenia--Main-scheme0.png', 'module2')"
+
                                         <x-ref>Rivera2000</x-ref>
                                              href="//2016.igem.org/Team:Slovenia/Protease_signaling/Logic">
+
                                        . These domains form aggregates in the endoplasmic reticulum (ER) that are too
                                        <area id="area3" class="popup" shape="poly" coords="" alt="module1"
+
                                        large to exit the ER.
                                              onmouseover="loadImage('//2016.igem.org/wiki/images/f/f6/T--Slovenia--Main-scheme2.png', 'module3')"
+
                                        After the addition of a small synthetic molecule, the CADs start to disaggregate
                                              onmouseout="loadImage('//2016.igem.org/wiki/images/c/c2/T--Slovenia--Main-scheme0.png', 'module3')"
+
                                        and the protein of interest can be secreted. In the second example Chen et al.
                                              href="//2016.igem.org/Team:Slovenia/Protease_signaling/Overview">
+
                                        introduced a
                                        <area id="area4" class="popup" shape="poly" coords="" alt="module1"
+
                                         light-triggered secretion system. They also based their system on conditional
                                              onmouseover="loadImage('//2016.igem.org/wiki/images/1/12/T--Slovenia--Main-scheme4.png', 'module4')"
+
                                        aggregation; however they used the plant photoreceptor UVR8 which forms
                                              onmouseout="loadImage('//2016.igem.org/wiki/images/c/c2/T--Slovenia--Main-scheme0.png', 'module4')"
+
                                        photolabile homodimers to make
                                              href="//2016.igem.org/Team:Slovenia/Implementation/ProteaseInducible_secretion">
+
                                        aggregates on the ER membrane. Upon light excitation the aggregates made by UVR8
                                    </map>
+
                                        started to disaggregate and were transported from the ER to the plasma membrane,
                                    <div class="popup module1">
+
                                        but have not been
                                        <span class="popuptext" id="module1"><b>Enhanced mechanosensing:</b><br>
+
                                         observed in the cell supernatant
                                            Sensitivity of mammalian cells to ultrasound or other mechanical stimuli was enhanced by the introduction
+
                                        <x-ref>Chen2013</x-ref>.
                                            of mechanosensitive ion channels and/or by the expression of protein gas vesicles from bacteria. Influx of
+
                                        The weakness of the two described systems is that they both rely on the
                                            calcium through channels is sensed by formation of a complex between calmodulin and M13 peptide that can
+
                                        exogenous chemical or physical signals instead of using a biochemical signal to
                                            result in a rapid light emission by cells (used for cell painting) or reconstitution of a split protease.</span>
+
                                        induce the secretion, which
                                    </div>
+
                                        means that they can’t be integrated into the signaling system that’s senses the
                                    <div class="popup module2">
+
                                        cellular state. In order to better respond to the state of the cell or a logic
                                         <span class="popuptext" id="module2"><b>Protease based signaling <br/>and information processing:</b><br/>
+
                                        circuit inside a cell
                                            Combinations of proteolytic activities against specific targets resulted in activation of a reporter or another
+
                                        we decided to develop an inducible secretion system based on the biochemical
                                            protease, which forms the basis for the design of a new type of rapid signaling pathways and construction of
+
                                        signal.
                                            logic functions.</span>
+
                                     </p>
                                    </div>
+
                                    <div class="popup module3">
+
                                         <span class="popuptext" id="module3"><b>Orthogonal site-specific proteases: </b><br/> A collection of orthogonal
+
                                            site-specific proteases that recognize different targets was prepared as split proteins, whose activity against
+
                                            selected targets can be induced by stimulation with an external signal such as light or chemicals.</span>
+
                                    </div>
+
                                    <div class="popup module4">
+
                                         <span class="popuptext"
+
                                              id="module4"> <b>Protease-triggered rapid secretion <br/> of therapeutic proteins:</b> <br/>A rapid cellular
+
                                            response by secretion of a protein is triggered by the proteolytic cleavage of an endoplasmic reticulum retention
+
                                            peptide. After the cleavage the cargo protein is moved from the ER, and secreted as therapeutic protein.</span>
+
                                     </div>
+
 
                                 </div>
 
                                 </div>
 
                             </div>
 
                             </div>
 +
                            <p><br/>Many proteins that reside on the membrane or in the lumen of the ER contain short
 +
                                peptide signals. Proteins present in the lumen of the ER contain a KDEL C-terminal
 +
                                sequence
 +
                                (Lys-Asp-Glu-Leu) while type I transmembrane (TM) proteins contain a dilysine (KKXX)
 +
                                motif on their C-terminus (cytosolic side)
 +
                                <x-ref>Munro1987, Jackson1990, Stornaiuolo2003</x-ref>.
 +
                                . The mechanism that allows these proteins to stay in the ER is retrieval rather than
 +
                                retention. However, we decided to use the term retention for
 +
                                description of this process. ER luminal proteins interact with the KDEL receptor, a
 +
                                transmembrane ER resident protein. The cytosolic part of the KDEL receptor interacts
 +
                                with
 +
                                coat proteins I (COP I) which coat vesicles and are responsible for transporting
 +
                                proteins from the cis end of the Golgi apparatus (cis-GA) back to the ER. The KKXX motif
 +
                                present
 +
                                on type I TM proteins can directly interact with the COP I for retrieval
 +
                                <x-ref>Stornaiuolo2003, Letourneur1994</x-ref>
 +
                                .
 +
                            </p>
 +
                            <p>Our idea was that if we proteolytically remove the retention signal, the protein of
 +
                                interest would no longer be retrieved back to the ER and could be secreted from the
 +
                                cell.
 +
                                To achieve this we designed two types of secretory reporters, one type based on the
 +
                                luminal retention using KDEL sequence and the other based on the transmembrane retention
 +
                                with
 +
                                a KKMP sequence. In each case, the retention sequence was preceded by a TEVp cleavage
 +
                                site to allow for inducible secretion, which could be replaced by any other peptide
 +
                                target
 +
                                of our <a href="https://2016.igem.org/Team:Slovenia/Protease_signaling/Orthogonality"> orthogonal protease set</a>.</p>
 
                         </div>
 
                         </div>
                    </div>
+
                         </div>
                    <div class="ui segment">
+
 
                         <h4><span id="experts" class="section colorize">&nbsp;</span>Abstract for experts</h4>
+
                         <h1><span class="section">&nbsp;</span>Results</h1>
                        <p>Synthetic biology opens exciting perspectives to control cells, for applications ranging from
+
                            industrial processes to cell-based therapy. However, the large majority of designed cellular
+
                            circuits are based on transcriptional regulation, which may be too slow for many
+
                            therapeutic or diagnostic applications, for example delivery of insulin or detection of a
+
                            metabolite. Several medical doctors and researchers that we consulted stressed that a fast
+
                            but controllable response is high on their wish list of expectations from synthetic biology.
+
                            Additionally, noninvasive stimulation of selected tissues in the organism would also be
+
                            highly desirable. While light is extremely useful as a rapid, spatially-restricted input
+
                            signal, it cannot penetrate deep into the tissue. On the other hand, ultrasound combines
+
                            several advantages of light with the added ability to penetrate tissue.</p>
+
                        <p>In our project we enhanced the sensitivity of mammalian cells to ultrasound or other
+
                            mechanical stimuli by introduction of bacterial or engineered mammalian mechanosensors.
+
                            Additionally, the response to ultrasound and touch was strongly increased by expression of
+
                            the two components of bacterial gas vesicles, GvpA and GvpC. Mechanosensing was detected by
+
                            the calcium-induced calmodulin-M13 complex reconstituting split cyclic luciferase, highly
+
                            applicable for the emerging field of mechanogenetics. This enabled us to draw on cells using
+
                            touch, where we engaged in collaboration with the artist Laura Olalde.</p>
+
                        <p>For the rapid response of cells to multiple stimuli we designed proteolysis-based signaling
+
                            pathways. Four orthogonal split proteases were generated, each recognizing
+
                            its own motif of seven amino acid residues. Based on cleavage of coiled-coil dimerizing
+
                            domains we demonstrated the ability to implement proteolysis-based signal pathways and logic
+
                            functions in mammalian cells. Based on the cleavage of an ER retention peptide by a
+
                            protease, input signals led to protein secretion without the slow step of induced protein
+
                            synthesis.</p>
+
                        <p>We believe that this project introduced several foundational advances that could be very
+
                            useful to synthetic biology far beyond iGEM and for the benefit of humanity for therapy,
+
                            diagnostics and potentially many other advanced applications.</p>
+
                    </div>
+
                    <div class="ui segment">
+
                        <h4><span id="plain" class="section colorize">&nbsp;</span>Abstract in plain English</h4>
+
                        <p>
+
                            Synthetic biology aims to control cells so they can obey our commands and do what we want,
+
                            for example produce drugs when needed. In our project we made cells which respond to ultrasound
+
                            or touch. When we touch the cells they light up, which can be recorded on a camera. Ideally
+
                            we want cells to respond to our commands as fast as possible, because sometimes we can’t
+
                            wait an hour before the cells produce the medicine and release it. That is why we gave cells
+
                            a novel mechanism of processing information.
+
                            We achieved this by combining several enzymes that recognize very specific parts of proteins
+
                            and cut them, which changes their function. This allowed us to combine different signals,
+
                            like sound, touch, light or chemicals, to obtain the desired cell response. The new enzymes
+
                            can also cut the anchor with which medicines are attached to cells after the cells make
+
                            them. Among many possible uses of our inventions, we can imagine activating cells in the
+
                            brain by ultrasound, which means that we don’t need to use
+
                            surgery to help people with Parkinson’s disease, or can trigger fast production of insulin
+
                            in the body, to help people with diabetes.
+
                        </p>
+
                    </div>
+
                    <div>
+
                         <h1 class="ui centered dividing header"><span id="achievements" class="section colorize"> &nbsp; </span>Achievements
+
                        </h1>
+
 
                         <div class="ui segment">
 
                         <div class="ui segment">
                            <div class="corners" style="float:right;">
+
<div>
                                <p><img src="//2016.igem.org/wiki/images/d/dc/T--Slovenia--starSmall.png"
+
                            <h3><span id = "lum" class="section colorize">&nbsp;</span>Secretion from the ER lumen</h3>
                                        alt="newAtiGEM" width="28" height="28" style="display: inline;"> new in science
+
                            <p>To achieve and detect the inducible secretion from the ER lumen, we created two reporter
                                 </p>
+
                                constructs with a cleavable KDEL sequence targeted to the ER lumen: SEAP<sup>KDEL</sup>
                                 <p><img src="//2016.igem.org/wiki/images/0/0d/T--Slovenia--igemLogoSmall.png"
+
                                and
                                         alt="newAtiGEM" width="30" height="30" style="display: inline;"> new at iGEM</p>
+
                                TagRFP<sup>KDEL</sup>. Those proteins contained a protease target motif between the
 +
                                reporter domain and the KDEL domain, aimed to enable protein secretion after the
 +
                                proteolytic cleavage.
 +
                                We used a TEVp variant (erTEVp) for all of our experiments with luminal retention.</p>
 +
                            <div class="ui styled fluid accordion">
 +
                                <div class="title">
 +
                                    <i class="dropdown icon"></i>
 +
                                    Further explanation ...
 +
                                 </div>
 +
                                 <div class="content">
 +
                                    <p>
 +
                                        In order to rely on TEVp cleavage in the ER lumen, we had to take some
 +
                                        additional considerations into account. Cesaratto et al.</x-ref>
 +
                                        Cesaratto2015</x-ref> reported that the wild
 +
                                        type TEV protease is not active in the lumen of ER. They designed a TEV protease
 +
                                        variant active in the endoplasmic reticulum by preventing two major types of
 +
                                        post-translational
 +
                                        modifications: N-glycosylation and cysteine oxidation. To avoid these inhibiting
 +
                                         modifications, mutations N23Q, C130S and N171T were made. To ensure correct
 +
                                        localization and
 +
                                        accumulation of this TEVp variant inside the endoplasmic reticulum, we also
 +
                                        attached an ER signal sequence at the N-terminus and KDEL at the C-terminus of the
 +
                                        protein.
 +
                                    </p>
 +
                                </div>
 
                             </div>
 
                             </div>
                             <ul>
+
                             <p style="clear:both"><br/></p>
                                 <li>Mammalian cell sensitivity to ultrasound and mechanical stimuli was increased by
+
 
                                     ectopic expression of bacterial or human cation permeable channels and functional
+
 
                                    reconstitution of bacterial protein gas vesicles from two protein components (GvpA
+
                            <div style="float:right; width:50%">
                                    and GvpC) <img src="//2016.igem.org/wiki/images/d/dc/T--Slovenia--starSmall.png"
+
                                 <figure data-ref="1">                                  
                                                  alt="newAtiGEM" width="28" height="28" style="display: inline;"></li>
+
                                     <img src="https://static.igem.org/mediawiki/2016/9/9e/T--Slovenia--6.2.1.png">
                                 <li>A custom-made ultrasound generator device was used to stimulate mammalian cells <img
+
                                    <figcaption><b>Cleavage with ER-residing protease (erTEV) facilitates secretion of
                                        src="//2016.igem.org/wiki/images/0/0d/T--Slovenia--igemLogoSmall.png"
+
                                        reporter from cells.</b><br/>
                                         alt="newAtiGEM" width="30" height="30" style="display: inline;"></li>
+
                                        <p style="text-align:justify">(A) Scheme of the reporter with cleavable KDEL
                                <li>A mechano-sensory luciferase reporter sensitive to an influx of free calcium ions
+
                                            retention signal and protease target motif.
                                    was introduced into mammalian cells, which enabled rapid light emission of mammalian
+
                                            (B) The reporter with the KDEL retention signal was localized in the ER.
                                    cells in response to mechanical stimuli and enabled painting on cells by touch with
+
                                            HEK293T cells were transfected with the indicated reporters and in (C) also
                                    exciting potentials for other applications <img
+
                                            with erTEVp.
                                            src="//2016.igem.org/wiki/images/d/dc/T--Slovenia--starSmall.png"
+
                                            Localization was detected with confocal microscopy. (C)The reporter was
                                            alt="newAtiGEM" width="28" height="28" style="display: inline;"></li>
+
                                            detected in the medium of cells only when cotransfected with erTEVp. HEK293T
                                 <li>A cyclic proteolysis-activated luciferase reporter was experimentally verified and
+
                                            cells were transfected
                                     introduced into the iGEM collection <img
+
                                            with the indicated constructs. Reporters were detected with WB in the
                                            src="//2016.igem.org/wiki/images/0/0d/T--Slovenia--igemLogoSmall.png"
+
                                            concentrated medium.
                                            alt="newAtiGEM" width="30" height="30" style="display: inline;"></li>
+
                                        </p></figcaption>
                                <li>A set of four different orthogonal site-specific proteases was designed and tested
+
                                </figure>
                                    as split proteins with induced reconstitution in mammalian cells <img
+
                            </div>
                                             src="//2016.igem.org/wiki/images/d/dc/T--Slovenia--starSmall.png"
+
                            <p>When the TagRFP<sup>KDEL</sup> reporter (
                                            alt="newAtiGEM" width="28" height="28" style="display: inline;"></li>
+
                                <ref>1</ref>
                                 <li>New orthogonal protease-based signaling pathways were designed as an information      processing platform
+
                                A) was expressed in the ER without an active erTEVp we confirmed its localization in the
                                  and several logic functions based on the combination of multiple input
+
                                ER with confocal microscopy
                                     signals were tested experimentally <img
+
                                (
                                            src="//2016.igem.org/wiki/images/d/dc/T--Slovenia--starSmall.png"
+
                                <ref>1</ref>
                                            alt="newAtiGEM" width="28" height="28" style="display: inline;"></li>
+
                                B). Additionally, we could not detect any TagRFP in the cell medium with Western
                                 <li>Proteolysis of ER retention signal was introduced as the trigger for the fast
+
                                blotting. When erTEVp was present and active in the ER, the KDEL sequence was
                                    release of proteins from cells aimed to enable fast therapeutic responses such as
+
                                removed from the reporter and the protein was secreted from the cell, which we detected
                                    required for the release of peptide hormones, neuroactive peptides etc. <img
+
                                with Western blot (
                                            src="//2016.igem.org/wiki/images/d/dc/T--Slovenia--starSmall.png"
+
                                <ref>1</ref>
                                            alt="newAtiGEM" width="28" height="28" style="display: inline;"></li>
+
                                C). This demonstrated that proteolytic activity in the ER can
                             </ul>
+
                                regulate protein secretion.
 +
                            </p>
 +
                            <p style="clear:left">Using SEAP<sup>KDEL</sup> we were able to confirm that the reporter is
 +
                                not present in the cell medium without coexpression of erTEVp. When erTEVp was
 +
                                cotransfected with
 +
                                the reporter, we detected a large increase in enzymatic activity in the medium (
 +
                                 <ref>2</ref>
 +
                                ).
 +
                            </p>
 +
                            <div style="float:left; width:40%">
 +
                                <figure data-ref="2">
 +
                                    <img src="https://static.igem.org/mediawiki/2016/6/61/T--Slovenia--6.2.2.png">
 +
                                    <figcaption><b>Secretion of the SEAP reporter from ER lumen by cleavage with
 +
                                         ER-resident protease.</b><br/>
 +
                                        <p style="text-align:justify">HEK293T cells were transfected with indicated
 +
                                            reporter and erTEVp. Increased SEAP activity was detected in the medium of
 +
                                            cells
 +
                                            expressing both reporter and erTEVp protease.
 +
                                        </p>
 +
                                    </figcaption>
 +
                                </figure>
 +
                            </div>
 +
                            </div>
 +
 
 +
<div>
 +
                            <h3 style="clear:both"><span id = "mem" class="section colorize">&nbsp;</span>Secretion from the ER membrane</h3>
 +
                            <p>The second approach to regulate protein secretion from the ER by protease was to used
 +
                                KKMP ER retention peptide linked to the transmembrane protein with a protease target
 +
                                motif on the cytoplasmic side, N-terminally to the KKMP peptide. A transmembrane (TM)
 +
                                domain from the B-cell receptor
 +
                                (<a href="http://parts.igem.org/Part:BBa_K157010">Bba_K157010</a>) was used for the
 +
                                integration of target proteins in the ER membrane. Similar as described above, two
 +
                                reporter
 +
                                constructs with SEAP and TagRFP (SEAP:TM<sup>KKMP</sup> and TagRFP:TM<sup>KKMP</sup>)
 +
                                were designed and the constructs also contained a signal sequence at their N-terminus
 +
                                and a
 +
                                proteolytically cleavable ER retention signal at their C-terminus. In case of
 +
                                transmembrane targeted reporters we used the KKMP retention signal preceded by 3 copies
 +
                                of the
 +
                                TEVp cleavage site on the cytosolic side of the membrane.</p>
 +
                            <p>Additionally, either one or four furin cleavage sites were inserted between the protein
 +
                                of interest on the luminal side of the ER, which enable cleavage of the reporter
 +
                                protein from the membrane, but this could only occur after the KKMP had been removed and
 +
                                the protein could enter the trans-GA. Furin is a native cellular endoprotease that is
 +
                                active only in the trans-GA.</x-ref>Henrich2003</x-ref> This allowed us to design our
 +
                                constructs so that they are cleaved off of the membrane without any modified scar
 +
                                sequences
 +
                                attached to them.</p>
 +
 
 +
 
 +
                            <div style="float:left; width:100%"><span id="tagRFP" class="section"></span>
 +
                                 <figure data-ref="3">
 +
                                     <img src="https://static.igem.org/mediawiki/2016/b/b4/T--Slovenia--6.2.3.png">
 +
                                    <figcaption><b>Localization of protease-responsive reporters on ER depending on the
 +
                                        proteolysis. </b><br/>
 +
                                        <p style="text-align:justify">(A) The transmembrane reporter without the KKMP
 +
                                            retention signal was localized both on the ER and plasma membrane. (B) The
 +
                                            transmembrane reporter with the KKMP retention
 +
                                            signal was localized exclusively on the ER membrane. (C) After cleavage of
 +
                                            the KKMP retention signal, the transmembrane reporter translocated to the
 +
                                            plasma membrane. HEK293T
 +
                                            cells were transfected with the indicated reporters and in (C) also with
 +
                                            TEVp. Localization was detected with confocal microscopy. Each image is
 +
                                            accompanied with a scheme of
 +
                                            the transfected construct. (D) Glycosylated reporter was detected in the
 +
                                            medium of cells transfected with the transmembrane reporter without the KKMP
 +
                                             retention signal.
 +
                                            HEK293T cells were transfected with the indicated constructs. Reporters were
 +
                                            detected with WB in the concentrated medium. In lane 2, sample was incubated
 +
                                            with N-glycosidase
 +
                                            F.
 +
                                        </p></figcaption>
 +
                                </figure>
 +
                            </div>
 +
                            <div style="float:right; width:50%"><span  id="SEAP" class="section"></span>
 +
                                 <figure data-ref="4">
 +
                                     <img onclick="resize(this)" src="https://static.igem.org/mediawiki/2016/2/2f/T--Slovenia--6.2.4.png">
 +
                                    <figcaption><b>Inducible secretion of reporter localized on ER membrane.</b><br/>
 +
                                        <p style="text-align:justify">SEAP activity was increased in the medium of cells
 +
                                            induced with rapamycin. (B) Scheme of the transmembrane reporter with
 +
                                            cleavable KKMP retention signal and inducible protease.
 +
                                            HEK293T cells were transfected with the indicated reporter and rapamycin
 +
                                            inducible split proteases. Uncleaved proteases were used as positive
 +
                                            control.</p></figcaption>
 +
                                 </figure>
 +
                            </div>
 +
                            <p>Localization of the TagRFP:TM<sup>KKMP</sup> reporter was confirmed by the confocal
 +
                                microscopy. We used a control reporter without the KKMP retention signal (TagRFP:TM)
 +
                                which we detected both on the ER and the plasma membrane (
 +
                                <ref>3</ref>
 +
                                A). In case of present KKMP retention signal, the reporter was detected only on the
 +
                                ER
 +
                                (
 +
                                <ref>3</ref>
 +
                                B). When TagRFP:TM<sup>KKMP</sup> was coexpressed with TEVp, localization of the
 +
                                reporter was similar to the localization of the positive control (TagRFP:TM)
 +
                                on the plasma membrane and the ER (
 +
                                <ref>3</ref>
 +
                                C).
 +
                            </p>
 +
                            <p>A band with a slightly larger apparent size than the expected size of TagRFP (28 kDa) was
 +
                                detected by Western blotting in cells transfected with TagRFP:TM. We showed that the
 +
                                unexpected difference in size was due to glycosylation, as we detected the protein at
 +
                                the expected size after deglycosylation of the medium sample with N-glycosidase F. We
 +
                                were
 +
                                unable to detect a corresponding band in the medium of cells transfected with
 +
                                TagRFP:TM<sup>KKMP</sup> in the absence of the protease.</p>
 +
                            <p>Together, these results confirm that localization and secretion of the protein reporter
 +
                                with the transmembrane domain depends on the presence and proteolysis of the KKMP
 +
                                retention signal and that proteolysis can be used to induce secretion of already
 +
                                synthesized protein.</p>
 +
 
 +
 
 +
                            <p style="clear:both">Finally, we cotransfected cells with SEAP:TM<sup>KKMP</sup> and
 +
                                rapamycin-inducible split TEVp. We detected increased levels of the SEAP enzymatic
 +
                                activity in the medium of
 +
                                cells stimulated with rapamycin, which was dose dependent with respect to the amount of
 +
                                the transfected reporter-coding plasmid (
 +
                                <ref>4</ref>
 +
                                ). These results confirm that
 +
                                secretion of a target protein can be made inducible by an externally supplied signal,
 +
                                processed through our split protease system.
 +
                            </p>
 +
                            <p style="clear:both">
 +
                             </p>
 
                         </div>
 
                         </div>
                    </div>
 
                    <div>
 
                        <h1 class="ui centered dividing header"><span id="requirements" class="section colorize"> &nbsp; </span>Medal
 
                            requirements</h1>
 
                        <div class="ui basic segment">
 
                            <table class="ui collapsing unstackable celled table" style="box-shadow: 0 1px 2px 0 rgba(34,36,38,.15)">
 
                                <thead class="full-width">
 
                                <tr class="center aligned">
 
                                    <th> Medal</th>
 
                                    <th> Criteria</th>
 
                                    <th> Explanation</th>
 
                                    <th></th>
 
                                </tr>
 
                                </thead>
 
                                <tbody>
 
                                <tr>
 
                                    <td colspan="4" class="center aligned" style="background-color: gold">GOLD</td>
 
                                </tr>
 
                                <tr>
 
                                    <td>Integrated Human Practices</td>
 
                                    <td>Expand on your silver medal activity by demonstrating how you have integrated
 
                                        the investigated issues into
 
                                        the design and/or execution of your project.
 
                                    </td>
 
                                    <td>Implementation of several <a
 
                                            href="https://2016.igem.org/Team:Slovenia/Integrated_Practices">experts from
 
                                        different medical fields and culturologists</a> helped us
 
                                        improve our
 
                                        project.
 
                                    </td>
 
                                    <td><i class="large green checkmark icon"></i></td>
 
                                </tr>
 
                                <tr>
 
                                    <td>Improve a previous part or project
 
                                    </td>
 
                                    <td>Improve the function OR characterization of an existing BioBrick Part or Device
 
                                        and enter this information
 
                                        in the Registry.
 
                                    </td>
 
                                    <td>We <a href="https://2016.igem.org/Team:Slovenia/Parts">improved</a> the parts
 
                                        <a href="http://parts.igem.org/Part:BBa_K737005:Experience">BBa_K737005</a> and <a
 
                                                href="http://parts.igem.org/Part:BBa_K157010:Experience">BBa_K157010</a>
 
                                        by equipping them with additional tags, expressing them
 
                                        in human cells and further characterizing their function.
 
                                    </td>
 
                                    <td><i class="large green checkmark icon"></i></td>
 
                                </tr>
 
                                <tr>
 
                                    <td>Proof of concept</td>
 
                                    <td>Demonstrate a functional proof of concept of your project. </td>
 
                                    <td>We successfully demonstrated the functionality of selected (split) proteases and
 
                                        used them to <a
 
                                                href="https://2016.igem.org/Team:Slovenia/Demonstrate">control
 
                                            secretion</a> of the reporter protein from the cell.
 
                                    </td>
 
                                    <td><i class="large green checkmark icon"></i></td>
 
                                </tr>
 
                                <tr>
 
                                    <td>Demonstrate your work</td>
 
                                    <td>How your project works under real-world conditions.
 
                                    </td>
 
                                    <td>We showed that our mechanosensing constructs coexpressed in human cells allow
 
                                        for a controlled response to
 
                                        touch and used them for our art application, <a
 
                                                href="//2016.igem.org/Team:Slovenia/Proof">Touch painting</a>.
 
                                    </td>
 
                                    <td><i class="large green checkmark icon"></i></td>
 
                                </tr>
 
                                <tr>
 
                                    <td colspan="4" class="center aligned" style="background-color: silver">SILVER</td>
 
                                </tr>
 
                                <tr>
 
                                    <td>Validated Part / Validated Contribution</td>
 
                                    <td>Experimentally validate that at least one new BioBrick Part or Device of your
 
                                        own design and construction
 
                                        works as expected.
 
                                    </td>
 
                                    <td>We demonstrated the functionality of our constructs and provided experimental
 
                                        data. We created a list of our
 
                                        <a href="https://2016.igem.org/Team:Slovenia/Parts">favorite parts</a>
 
                                        and detailed our experiences with them.
 
                                    </td>
 
                                    <td><i class="large green checkmark icon"></i></td>
 
                                </tr>
 
                                <tr>
 
                                    <td>Collaboration</td>
 
                                    <td>Convince the judges you have helped any registered iGEM team from high school, a
 
                                        different track, another
 
                                        university, or another institution in a significant way.
 
                                    </td>
 
                                    <td>During our project we had several skype meetings with other iGEM teams. We also
 
                                        provided iGEM Team biotINK
 
                                        from Munich with <a href="http://parts.igem.org/Part:BBa_K782063">BBa_K782063
 
                                            created by team Slovenia 2012.</a>
 
                                    </td>
 
                                    <td><i class="large green checkmark icon"></i></td>
 
                                </tr>
 
                                <tr>
 
                                    <td>Human Practices</td>
 
                                    <td>Demonstrate how your team has identified, investigated, and addressed one or
 
                                        more of issues (education,
 
                                        public engagement, public policy issues, public perception, or other activities)
 
                                        in the context of your
 
                                        project.
 
                                    </td>
 
                                    <td>Education and transmission of interest in science is an <a
 
                                            href="https://2016.igem.org/Team:Slovenia/HP/Gold">important part of our
 
                                        project</a>. This
 
                                        is why we
 
                                        prepared several lectures for high school students and also collaborated with an
 
                                        artist who gave our project
 
                                        a new perspective by conveying science to public through art.
 
                                    </td>
 
                                    <td><i class="large green checkmark icon"></i></td>
 
                                </tr>
 
                                <tr>
 
                                    <td colspan="4" class="center aligned" style="background-color: #CD7F32">BRONZE</td>
 
                                </tr>
 
                                <tr>
 
                                    <td>Register and attend</td>
 
                                    <td>Register for iGEM.</td>
 
                                    <td>We have successfully registered.</td>
 
                                    <td><i class="large green checkmark icon"></i></td>
 
                                </tr>
 
                                <tr>
 
                                    <td>Deliverables</td>
 
                                    <td>Meet all deliverables on the Requirements page.</td>
 
                                    <td>We met all the listed deliverables.</td>
 
                                    <td><i class="large green checkmark icon"></i></td>
 
                                </tr>
 
                                <tr>
 
                                    <td>Attribution</td>
 
                                    <td>Create a page on your team wiki with clear attribution of each aspect of your
 
                                        project.
 
                                    </td>
 
                                    <td>We created a <a href="//2016.igem.org/Team:Slovenia/Attributions">wiki page</a> describing
 
                                        the attributions to the
 
                                        project.
 
                                    </td>
 
                                    <td><i class="large green checkmark icon"></i></td>
 
                                </tr>
 
                                <tr>
 
                                    <td>Part / Contribution</td>
 
                                    <td>Document at least one new standard BioBrick Part or Device central to your
 
                                        project and submit this part to
 
                                        the iGEM Registry.
 
                                    </td>
 
                                    <td>We documented and submitted 52 standard <a
 
                                            href="//parts.igem.org/cgi/partsdb/pgroup.cgi?pgroup=iGEM2016&group=Slovenia">BioBrick
 
                                        parts</a>.
 
                                    </td>
 
                                    <td><i class="large green checkmark icon"></i></td>
 
                                </tr>
 
                                </tbody>
 
                            </table>
 
 
<div class="ui segment" style="segment colorize"><h3><span id="imp" class="section colorize">&nbsp;</span>Part improvements</h3>
 
<p>We improved the BioBrick <a href="http://parts.igem.org/Part:BBa_K737005:Experience">BBa_K737005</a>, deposited by team OUC-China in 2012, coding for the
 
GvpC protein. This protein is one of two proteins that compose protein gas vesicles, which were used in our project to enhance the sensitivity of mammalian
 
cells to mechanical stimuli. We improved the part by adding a FLAG tag, which allowed us to analyze the expression of the part form the cells via western blot and
 
to observe the subcellular localization of the protein by confocal microscopy. We further characterized the part by expressing it in mammalian cells together with
 
GvpA, showing that these proteins substantially increase the cell sensitivity to ultrasound. This part also plays a central role in our Mechanosensing collection.</p>
 
<p>We also improved  <a href=" http://parts.igem.org/Part:BBa_K157010:Experience"> BBa_K157010</a>, a transmembrane domain used by 2008 iGEM Freiburg team. We used this domain as
 
an anchor to which we attached the TagRFP protein on the N-terminal side and the ER retention signal on the C-terminal side. By western blots and confocal fluorescent
 
microcopy we were able to show that this part can not only be used for plasma membrane localization but can also be retained in the ER with the simple addition of a
 
4-amino-acid retention signal KKMP. Upon induced proteolytic cleavage of the retention signal by inducible split protease, the protein was translocated to the trans
 
GA and the plasma membrane, where TagRFP was cleaved by furin and secreted into the medium.</p>
 
 
                         </div>
 
                         </div>
 +
                        <h1 class="ui left dividing header"><span id="ref-title" class="section">&nbsp;</span>References
 +
                        </h1>
 +
                        <div class="ui segment citing" id="references"></div>
 
                     </div>
 
                     </div>
 
                 </div>
 
                 </div>
 +
            </div>
 +
            <div>
 +
                <a href="//igem.org/Main_Page">
 +
                    <img border="0" alt="iGEM" src="//2016.igem.org/wiki/images/8/84/T--Slovenia--logo_250x250.png"
 +
                        width="5%" style="position: fixed; bottom:0%; right:1%;">
 +
                </a>
 
             </div>
 
             </div>
 
         </div>
 
         </div>
 
     </div>
 
     </div>
</div>
 
<div>
 
<a href="//igem.org/Main_Page">
 
<img border="0" alt="iGEM" src="//2016.igem.org/wiki/images/8/84/T--Slovenia--logo_250x250.png" width="5%" style = "position: fixed; bottom:0%; right:1%;">
 
</a>
 
 
</div>
 
</div>
 
</body>
 
</body>
 
</html>
 
</html>

Revision as of 12:54, 19 October 2016

Protease inducible secretion

 Protease-based inducible secretion

  • Retention of proteins in ER lumen was demonstrated by confocal microscopy and detection of the protein in the cell medium.
  • A variant of TEVp active in the ER lumen was implemented to control protein secretion from the ER lumen.
  • Retention of proteins on the ER membrane was also demonstrated by confocal microscopy and detection of the protein in the cell medium.
  • Rapamycin induced cleavage was used for controlled and inducible secretion of proteins from the ER membrane.

 

To achieve a fast regulated cellular response resulting in the protein release, we decided to mimic the release of insulin from beta cells where the protein of interest is pre-formed and present intracellularly in secretory granules. In contrast to the specialized storage and release mechanism of insulin from beta cells we wanted to develop a more general and modular solution by making use of components already existing in different types of cells. Additionally, there should be minimal leakage from the protein depot in the uninduced state and after induction secretion from the cell should be fast.

Further explanation ...

Not many systems for the inducible release of proteins have been engineered to date. In one of the few examples Rivera et al. developed a system where the protein of interest was fused to a conditional aggregation domain (CAD) Rivera2000 . These domains form aggregates in the endoplasmic reticulum (ER) that are too large to exit the ER. After the addition of a small synthetic molecule, the CADs start to disaggregate and the protein of interest can be secreted. In the second example Chen et al. introduced a light-triggered secretion system. They also based their system on conditional aggregation; however they used the plant photoreceptor UVR8 which forms photolabile homodimers to make aggregates on the ER membrane. Upon light excitation the aggregates made by UVR8 started to disaggregate and were transported from the ER to the plasma membrane, but have not been observed in the cell supernatant Chen2013. The weakness of the two described systems is that they both rely on the exogenous chemical or physical signals instead of using a biochemical signal to induce the secretion, which means that they can’t be integrated into the signaling system that’s senses the cellular state. In order to better respond to the state of the cell or a logic circuit inside a cell we decided to develop an inducible secretion system based on the biochemical signal.


Many proteins that reside on the membrane or in the lumen of the ER contain short peptide signals. Proteins present in the lumen of the ER contain a KDEL C-terminal sequence (Lys-Asp-Glu-Leu) while type I transmembrane (TM) proteins contain a dilysine (KKXX) motif on their C-terminus (cytosolic side) Munro1987, Jackson1990, Stornaiuolo2003. . The mechanism that allows these proteins to stay in the ER is retrieval rather than retention. However, we decided to use the term retention for description of this process. ER luminal proteins interact with the KDEL receptor, a transmembrane ER resident protein. The cytosolic part of the KDEL receptor interacts with coat proteins I (COP I) which coat vesicles and are responsible for transporting proteins from the cis end of the Golgi apparatus (cis-GA) back to the ER. The KKXX motif present on type I TM proteins can directly interact with the COP I for retrieval Stornaiuolo2003, Letourneur1994 .

Our idea was that if we proteolytically remove the retention signal, the protein of interest would no longer be retrieved back to the ER and could be secreted from the cell. To achieve this we designed two types of secretory reporters, one type based on the luminal retention using KDEL sequence and the other based on the transmembrane retention with a KKMP sequence. In each case, the retention sequence was preceded by a TEVp cleavage site to allow for inducible secretion, which could be replaced by any other peptide target of our orthogonal protease set.

 Results

 Secretion from the ER lumen

To achieve and detect the inducible secretion from the ER lumen, we created two reporter constructs with a cleavable KDEL sequence targeted to the ER lumen: SEAPKDEL and TagRFPKDEL. Those proteins contained a protease target motif between the reporter domain and the KDEL domain, aimed to enable protein secretion after the proteolytic cleavage. We used a TEVp variant (erTEVp) for all of our experiments with luminal retention.

Further explanation ...

In order to rely on TEVp cleavage in the ER lumen, we had to take some additional considerations into account. Cesaratto et al. Cesaratto2015 reported that the wild type TEV protease is not active in the lumen of ER. They designed a TEV protease variant active in the endoplasmic reticulum by preventing two major types of post-translational modifications: N-glycosylation and cysteine oxidation. To avoid these inhibiting modifications, mutations N23Q, C130S and N171T were made. To ensure correct localization and accumulation of this TEVp variant inside the endoplasmic reticulum, we also attached an ER signal sequence at the N-terminus and KDEL at the C-terminus of the protein.


Cleavage with ER-residing protease (erTEV) facilitates secretion of reporter from cells.

(A) Scheme of the reporter with cleavable KDEL retention signal and protease target motif. (B) The reporter with the KDEL retention signal was localized in the ER. HEK293T cells were transfected with the indicated reporters and in (C) also with erTEVp. Localization was detected with confocal microscopy. (C)The reporter was detected in the medium of cells only when cotransfected with erTEVp. HEK293T cells were transfected with the indicated constructs. Reporters were detected with WB in the concentrated medium.

When the TagRFPKDEL reporter ( 1 A) was expressed in the ER without an active erTEVp we confirmed its localization in the ER with confocal microscopy ( 1 B). Additionally, we could not detect any TagRFP in the cell medium with Western blotting. When erTEVp was present and active in the ER, the KDEL sequence was removed from the reporter and the protein was secreted from the cell, which we detected with Western blot ( 1 C). This demonstrated that proteolytic activity in the ER can regulate protein secretion.

Using SEAPKDEL we were able to confirm that the reporter is not present in the cell medium without coexpression of erTEVp. When erTEVp was cotransfected with the reporter, we detected a large increase in enzymatic activity in the medium ( 2 ).

Secretion of the SEAP reporter from ER lumen by cleavage with ER-resident protease.

HEK293T cells were transfected with indicated reporter and erTEVp. Increased SEAP activity was detected in the medium of cells expressing both reporter and erTEVp protease.

 Secretion from the ER membrane

The second approach to regulate protein secretion from the ER by protease was to used KKMP ER retention peptide linked to the transmembrane protein with a protease target motif on the cytoplasmic side, N-terminally to the KKMP peptide. A transmembrane (TM) domain from the B-cell receptor (Bba_K157010) was used for the integration of target proteins in the ER membrane. Similar as described above, two reporter constructs with SEAP and TagRFP (SEAP:TMKKMP and TagRFP:TMKKMP) were designed and the constructs also contained a signal sequence at their N-terminus and a proteolytically cleavable ER retention signal at their C-terminus. In case of transmembrane targeted reporters we used the KKMP retention signal preceded by 3 copies of the TEVp cleavage site on the cytosolic side of the membrane.

Additionally, either one or four furin cleavage sites were inserted between the protein of interest on the luminal side of the ER, which enable cleavage of the reporter protein from the membrane, but this could only occur after the KKMP had been removed and the protein could enter the trans-GA. Furin is a native cellular endoprotease that is active only in the trans-GA.Henrich2003 This allowed us to design our constructs so that they are cleaved off of the membrane without any modified scar sequences attached to them.

Localization of protease-responsive reporters on ER depending on the proteolysis.

(A) The transmembrane reporter without the KKMP retention signal was localized both on the ER and plasma membrane. (B) The transmembrane reporter with the KKMP retention signal was localized exclusively on the ER membrane. (C) After cleavage of the KKMP retention signal, the transmembrane reporter translocated to the plasma membrane. HEK293T cells were transfected with the indicated reporters and in (C) also with TEVp. Localization was detected with confocal microscopy. Each image is accompanied with a scheme of the transfected construct. (D) Glycosylated reporter was detected in the medium of cells transfected with the transmembrane reporter without the KKMP retention signal. HEK293T cells were transfected with the indicated constructs. Reporters were detected with WB in the concentrated medium. In lane 2, sample was incubated with N-glycosidase F.

Inducible secretion of reporter localized on ER membrane.

SEAP activity was increased in the medium of cells induced with rapamycin. (B) Scheme of the transmembrane reporter with cleavable KKMP retention signal and inducible protease. HEK293T cells were transfected with the indicated reporter and rapamycin inducible split proteases. Uncleaved proteases were used as positive control.

Localization of the TagRFP:TMKKMP reporter was confirmed by the confocal microscopy. We used a control reporter without the KKMP retention signal (TagRFP:TM) which we detected both on the ER and the plasma membrane ( 3 A). In case of present KKMP retention signal, the reporter was detected only on the ER ( 3 B). When TagRFP:TMKKMP was coexpressed with TEVp, localization of the reporter was similar to the localization of the positive control (TagRFP:TM) on the plasma membrane and the ER ( 3 C).

A band with a slightly larger apparent size than the expected size of TagRFP (28 kDa) was detected by Western blotting in cells transfected with TagRFP:TM. We showed that the unexpected difference in size was due to glycosylation, as we detected the protein at the expected size after deglycosylation of the medium sample with N-glycosidase F. We were unable to detect a corresponding band in the medium of cells transfected with TagRFP:TMKKMP in the absence of the protease.

Together, these results confirm that localization and secretion of the protein reporter with the transmembrane domain depends on the presence and proteolysis of the KKMP retention signal and that proteolysis can be used to induce secretion of already synthesized protein.

Finally, we cotransfected cells with SEAP:TMKKMP and rapamycin-inducible split TEVp. We detected increased levels of the SEAP enzymatic activity in the medium of cells stimulated with rapamycin, which was dose dependent with respect to the amount of the transfected reporter-coding plasmid ( 4 ). These results confirm that secretion of a target protein can be made inducible by an externally supplied signal, processed through our split protease system.

 References