Difference between revisions of "Team:Pasteur Paris/Microbiology week11"

Line 229: Line 229:
 
     <p><h3><B>August 16, 2016:</B></h3></p>
 
     <p><h3><B>August 16, 2016:</B></h3></p>
 
     <p>
 
     <p>
         <a href="#exp1"><h4> 188. SDS page gel with inserts C2 and B1</h4></a></br>
+
         <a href="#exp1"><h4> 188. SDS-PAGE gel with inserts C2 v2 and B1 v2</h4></a></br>
         <a href="#exp2"><h4> 189. Harvest the culture of miniprep</h4></a></br>
+
         <a href="#exp2"><h4> 189. Harvest the culture of Miniprep</h4></a></br>
 
     </p>
 
     </p>
 
     <p><h3><B>August 17, 2016:</B></h3></p>
 
     <p><h3><B>August 17, 2016:</B></h3></p>
 
     <p>
 
     <p>
         <a href="#exp3"><h4> 190. Miniprep of precultures B1col1/B1col2 and C2col1 </h4></a></br>  
+
         <a href="#exp3"><h4> 190. Miniprep of precultures B1 col1/B1 col2 and C2 col1 </h4></a></br>  
 
         <a href="#exp4"><h4> 191. Digestion of the plasmid pET43.1a(+) with A1/A2/D1/D2 </h4></a></br>  
 
         <a href="#exp4"><h4> 191. Digestion of the plasmid pET43.1a(+) with A1/A2/D1/D2 </h4></a></br>  
 
<a href="#exp5"><h4> 192. Electrophoresis on agarose gel of digestion products A1/A2/D1/D2 </h4></a></br>  
 
<a href="#exp5"><h4> 192. Electrophoresis on agarose gel of digestion products A1/A2/D1/D2 </h4></a></br>  
 
         <a href="#exp6"><h4> 193. Harvest the culture with Midiprep A1/A2/D1/D2/B1 col1/B1 col2/C2 </h4></a></br>  
 
         <a href="#exp6"><h4> 193. Harvest the culture with Midiprep A1/A2/D1/D2/B1 col1/B1 col2/C2 </h4></a></br>  
         <a href="#exp7"><h4> 194. Purification of the protein </h4></a></br>  
+
         <a href="#exp7"><h4> 194. FPLC Purification of the protein </h4></a></br>  
 
     </p>
 
     </p>
 
     <p><h3><B>August 18, 2016:</B></h3></p>
 
     <p><h3><B>August 18, 2016:</B></h3></p>
 
     <p>
 
     <p>
 
         <a href="#exp8"><h4> 195. Miniprep of cultures A1/A2/D1/D2/B1 col1/B2col2/C2 </h4></a></br>  
 
         <a href="#exp8"><h4> 195. Miniprep of cultures A1/A2/D1/D2/B1 col1/B2col2/C2 </h4></a></br>  
         <a href="#exp9"><h4> 196. Protein gel on SDS-Page </h4></a></br>  
+
         <a href="#exp9"><h4> 196. Protein gel on SDS-PAGE </h4></a></br>  
 
                 <a href="#exp10"><h4> 197. New colonies of B1 and C2 from 11/08</h4></a></br>
 
                 <a href="#exp10"><h4> 197. New colonies of B1 and C2 from 11/08</h4></a></br>
 
         <a href="#exp11"><h4> 198. Harvest the culture with Miniprep 4 colonies from A1, A2, D1 and D2, 2 colonies of B1 and 1 colony of C2</h4></a></br>  
 
         <a href="#exp11"><h4> 198. Harvest the culture with Miniprep 4 colonies from A1, A2, D1 and D2, 2 colonies of B1 and 1 colony of C2</h4></a></br>  
                 <a href="#exp12"><h4> 199. Purification of the protein </h4></a></br>
+
                 <a href="#exp12"><h4> 199. FPLC Purification of the protein </h4></a></br>
  
 
     </p>
 
     </p>
Line 252: Line 252:
 
     <p>
 
     <p>
 
         <a href="#exp13"><h4> 200. Miniprep of cultures made on the 18/08 </h4></a></br>
 
         <a href="#exp13"><h4> 200. Miniprep of cultures made on the 18/08 </h4></a></br>
         <a href="#exp14"><h4> 201. Measure the amount of DNA extracted from the miniprep of B1 and C2 </h4></a></br>  
+
         <a href="#exp14"><h4> 201. Measurement of the amount of DNA extracted from the Miniprep of B1 v2 and C2 v2</h4></a></br>  
 
         <a href="#exp15"><h4> 202. Digestion of the plasmid pET43.1a(+) with A1(0)/A1(1)/A1(3)/A1(4)/D1(3)/D1(4)/D2(2) </h4></a></br>  
 
         <a href="#exp15"><h4> 202. Digestion of the plasmid pET43.1a(+) with A1(0)/A1(1)/A1(3)/A1(4)/D1(3)/D1(4)/D2(2) </h4></a></br>  
 
         <a href="#exp16"><h4> 203. Electrophoresis on agarose gel of digestion products </h4></a></br>  
 
         <a href="#exp16"><h4> 203. Electrophoresis on agarose gel of digestion products </h4></a></br>  
Line 268: Line 268:
 
             <figcaption>
 
             <figcaption>
 
               <p>
 
               <p>
               <U> Aim:</U> To perform a Miniprep to isolate plasmid DNA of pET43.1a(+) with the inserts B1 col1, B1 col2 and C2 col1. The amplification method to increase the amount of plasmid is called Miniprep. </br> </br>
+
               <U> Aim:</U> To perform a Miniprep to isolate pET43.1a(+) plasmid DNA with the inserts B1 col1, B1 col2 and C2 col1. The amplification method to increase the amount of plasmid is called Miniprep. </br> </br>
 
               <U> Protocol:</U> follow in this <a href="https://static.igem.org/mediawiki/2016/d/d5/T--Pasteur_Paris--Miniprep_protocol.pdf">link</a></br></br>
 
               <U> Protocol:</U> follow in this <a href="https://static.igem.org/mediawiki/2016/d/d5/T--Pasteur_Paris--Miniprep_protocol.pdf">link</a></br></br>
 
               <U>What we did in the lab:</U></br>
 
               <U>What we did in the lab:</U></br>
Line 279: Line 279:
  
 
</br></br>
 
</br></br>
               <U>Method:</U></br>The protocol in step 1 ask for spinning at 6000g but we can only achieve 3500 g so we used 3500 g for 8 minutes. We will follow most of the protocol of QIAGEN Miniprep 2016 except for a few modifications, which we describe, therefore, below.</br>
+
               <U>Method:</U></br>The protocol in step 1 asks for spinning at 6000g but we can only achieve 3500g so we used 3500g for 8 minutes. We will follow most of the protocol of QIAGEN Miniprep 2016 except for a few modifications, which we describe, therefore, below.</br>
 
                       1.Follow QIAGEN kit steps</br>
 
                       1.Follow QIAGEN kit steps</br>
 
               </p>
 
               </p>
Line 295: Line 295:
 
                   <U>What we did in the lab:</U></br>
 
                   <U>What we did in the lab:</U></br>
 
                   <U>Materials:</U></br>
 
                   <U>Materials:</U></br>
                     &bull; Restriction enzymes: XbaI, HindIII (New England Biolabs, NEB) </br>
+
                     &bull; Restriction enzymes: Xba I, Hind III (New England Biolabs, NEB) </br>
 
                     &bull; Restriction enzyme buffers </br>
 
                     &bull; Restriction enzyme buffers </br>
 
                     &bull; 37°C water bath</br>
 
                     &bull; 37°C water bath</br>
Line 316: Line 316:
 
                           </tr>
 
                           </tr>
 
                           <tr>
 
                           <tr>
                             <td><strong><p>Vol<sub>XbaI</sub></p></strong></td>
+
                             <td><strong><p>Vol<sub>Xba I</sub></p></strong></td>
 
                             <td>1 &#181;L </td>
 
                             <td>1 &#181;L </td>
 
                             <td>1 &#181;L </td>
 
                             <td>1 &#181;L </td>
 
                           </tr>
 
                           </tr>
 
                           <tr>
 
                           <tr>
                             <td><strong><p>Vol<sub>HindIII</sub></p></strong></td>
+
                             <td><strong><p>Vol<sub>Hind III</sub></p></strong></td>
 
                             <td>1 &#181;L </td>
 
                             <td>1 &#181;L </td>
 
                             <td>1 &#181;L </td>
 
                             <td>1 &#181;L </td>
Line 358: Line 358:
 
                     <U>What we did in the lab:</U></br>
 
                     <U>What we did in the lab:</U></br>
 
                     <U>Materials:</U></br>
 
                     <U>Materials:</U></br>
                           &bull; Restriction enzymes: XbaI, HindIII (New England Biolabs, NEB) </br>
+
                           &bull; Restriction enzymes: Xba I, Hind III (New England Biolabs, NEB) </br>
 
                           &bull; Restriction enzyme buffers </br>
 
                           &bull; Restriction enzyme buffers </br>
 
                           &bull; 37°C water bath</br>
 
                           &bull; 37°C water bath</br>
 
                           &bull; UV spectrophotometer</br></br>
 
                           &bull; UV spectrophotometer</br></br>
 
                     <U>Method:</U></br>
 
                     <U>Method:</U></br>
                           &bull; Electrophoresis cuve </br>
+
                           &bull; Electrophoresis chamber </br>
 
                           &bull; TAE 1X </br>
 
                           &bull; TAE 1X </br>
 
                           &bull; Gene ruler (Thermoscientific 1kb plus) </br>
 
                           &bull; Gene ruler (Thermoscientific 1kb plus) </br>
                           &bull; Loading dye </br>
+
                           &bull; Loading dye 6X </br>
 
                           &bull; Agarose </br>
 
                           &bull; Agarose </br>
 
                           &bull; UV table </br>
 
                           &bull; UV table </br>
                           &bull; BET </br></br></br>
+
                           &bull; Ethidium bromide drops (EB) </br></br></br>
                     Beginning of the electrophoresis at 14h30 at 100V. </br></br></br>
+
                     Beginning of the electrophoresis at 14h30 at 100 V. </br></br></br>
 
                     <U>Results:</U></br>The gel reveals that A1 contains the insert but the amount of DNA is too low so we will redo the experiment.</br>
 
                     <U>Results:</U></br>The gel reveals that A1 contains the insert but the amount of DNA is too low so we will redo the experiment.</br>
 
                 </p>
 
                 </p>
Line 384: Line 384:
 
     <figcaption>
 
     <figcaption>
 
         <p>
 
         <p>
             <U> Aim:</U>  To start a culture for Midiprep. </br>In order to obtain a large amount of plasmid, we need to grow the bacteria overnight. </br> </br>
+
             <U> Aim:</U>  To start a culture for Midiprep. </br>In order to obtain a large amount of plasmid, we need to grow the bacteria overnight in a larger volume of LB media. </br> </br>
 
             <U> Protocol:</U> follow in this <a href="https://static.igem.org/mediawiki/2016/4/4b/T--Pasteur_Paris--Bacterial_culture_protocol.pdf">link</a></br></br>
 
             <U> Protocol:</U> follow in this <a href="https://static.igem.org/mediawiki/2016/4/4b/T--Pasteur_Paris--Bacterial_culture_protocol.pdf">link</a></br></br>
 
             <U>What we did in the lab:</U></br>
 
             <U>What we did in the lab:</U></br>
Line 394: Line 394:
 
                 &bull; LB medium </br></br> </br>
 
                 &bull; LB medium </br></br> </br>
 
             <U>Method:</U></br>
 
             <U>Method:</U></br>
                   2.One colony is picked from the plates and shaken in 25 ml of LB supplemented with Carbenicillin at 50 μg/ml. This step is done with the inserts A1/A2/D1/D2 and B1/B2 for sequencing. </br>
+
                   2.One colony is picked from the plates and shaken in 25 ml of LB supplemented with carbenicillin at 50 &#181;g/ml. This step is done with the inserts A1/A2/D1/D2 and B1/B2 for sequencing. </br>
 
                   3.The flask is placed in a shaking incubator at 37°C, 150 rpm overnight. </br></br> </br>
 
                   3.The flask is placed in a shaking incubator at 37°C, 150 rpm overnight. </br></br> </br>
 
         </p>
 
         </p>
Line 425: Line 425:
  
 
<U>Method:</U></br>
 
<U>Method:</U></br>
The protocol in step 1 ask for spinning at 6000 g but we can only achieve 3500 g so we used 3500 g for 20 minutes. We will follow most of the protocol of QIAGEN Midiprep 2016 except for a few modifications, which we describe, therefore, below. </br>
+
The protocol in step 1 ask for spinning at 6000g but we can only achieve 3500g so we used 3500g for 20 minutes. We will follow most of the protocol of QIAGEN Midiprep 2016 except for a few modifications, which we describe, therefore, below. </br>
  
 
1. Use culture from overnight (17 hr) step on June 7, 2016 </br>
 
1. Use culture from overnight (17 hr) step on June 7, 2016 </br>
2. Pour culture in 50 ml Falcon nd centrifuge (15 min, 3500 g, 4°C) </br>
+
2. Pour culture in 50 ml Falcon and centrifuge (15 min, 3500g, 4°C) </br>
 
3. Discard the supernatant (in biological waste) and add 4 ml of Buffer P1 (stored on ice) to the pellet </br>
 
3. Discard the supernatant (in biological waste) and add 4 ml of Buffer P1 (stored on ice) to the pellet </br>
 
4. Add 4 ml of Buffer P2 (for cell lysis) and mix by inverting the Falcon a few times. Wait 5 min at 22°C (room temperature: RT, EU). Note: The color of the solution will change to blue. </br>
 
4. Add 4 ml of Buffer P2 (for cell lysis) and mix by inverting the Falcon a few times. Wait 5 min at 22°C (room temperature: RT, EU). Note: The color of the solution will change to blue. </br>
Line 438: Line 438:
 
Because we have only bench microfuges, we need to dispense our volume in smaller fractions. </br>
 
Because we have only bench microfuges, we need to dispense our volume in smaller fractions. </br>
 
10. Elution of DNA with 5 ml of QF and aliquot in 2 ml tubes </br>
 
10. Elution of DNA with 5 ml of QF and aliquot in 2 ml tubes </br>
11. Centrifuge (30 min, 15000 g, room temperature) </br>
+
11. Centrifuge (30 min, 15000g, room temperature) </br>
 
12. Add 3.5 ml of isopropanol, mix to precipitate the DNA </br>
 
12. Add 3.5 ml of isopropanol, mix to precipitate the DNA </br>
13. Centrifuge (30 min, 15 000 g, at RT) </br>
+
13. Centrifuge (30 min, 15 000g, at RT) </br>
 
14. Remove isopropanol with pipet without taking DNA and place into chemical waste container </br>
 
14. Remove isopropanol with pipet without taking DNA and place into chemical waste container </br>
 
15. Add 1 ml of 70% ethanol, centrifuge again (15 min, 15 000 g, RT) and let air dry.
 
15. Add 1 ml of 70% ethanol, centrifuge again (15 min, 15 000 g, RT) and let air dry.
16. Resuspend in 50 &#181;L of Tris 10 mM pH 8.0, EDTA, 1 mM (TE) and store at -20°C.</br>
+
16. Resuspend in 50 &#181;l of Tris 10 mM pH 8.0, EDTA, 1 mM (TE) and store at -20°C.</br>
 
</p>
 
</p>
 
</figcaption>
 
</figcaption>
Line 456: Line 456:
 
     <figcaption>
 
     <figcaption>
  
<p><U> Aim:</U> The previous purification shows a significant band at 30kDa for the samples 22 and 24 but also one at 70kDa. It probably left some NusA in our column so, it will be cleaned.br>
+
<p><U> Aim:</U> The previous purification shows a significant band at 30 kDa for the samples 22 and 24 but also one at 70 kDa. It probably left some NusA in our column so, it will be cleaned.br>
 
  </br>
 
  </br>
  
Line 468: Line 468:
 
&bull;  Fast Purification Liquid Chromatography </br>
 
&bull;  Fast Purification Liquid Chromatography </br>
 
&bull;  Chaotropic reagent (Guanidinium 6M) </br>
 
&bull;  Chaotropic reagent (Guanidinium 6M) </br>
&bull;  EDTA 0,1M </br>
+
&bull;  EDTA 0.1 M </br>
&bull;  PMSF (100mM) </br>
+
&bull;  PMSF (100 mM) </br>
&bull;  Ni 2+ solution (100mM) </br>
+
&bull;  Ni 2+ solution (100 mM) </br>
&bull;  Centrifuge (labo deshmukh)
+
&bull;  Centrifuge (labo Deshmukh)
 
</br></br>
 
</br></br>
 
<U>Method:</U></br>
 
<U>Method:</U></br>
1. Melt the pellet of bacteria C2 (from 1 L culture) and resuspend it with 10 ml of buffer A </br>
+
1. Melt the pellet of bacteria C2 (from 1 l culture) and resuspend it with 10 ml of buffer A </br>
2. Put the column off the FPLC and wash it with 20 ml of milliQ water thanks to a fingerpit ans a syringue. </br>
+
2. Put the column off the FPLC and wash it with 20 ml of MilliQ water thanks to a finger tight connector and a syringe. </br>
3. Add 20 ml of chaotropic reagent to denaturate the proteins fixed to the column </br>
+
3. Add 20 ml of 6M Guanidinium Hydrochloride chaotropic reagent to denature the proteins fixed to the column </br>
 
4. Wash the column with 20 ml of water </br>
 
4. Wash the column with 20 ml of water </br>
5. Add 10 ml of EDTA to clean it from nickel </br>
+
5. Add 10 ml of EDTA to clean it of nickel ions </br>
 
6. Wash with 20 ml of water </br>
 
6. Wash with 20 ml of water </br>
7. Add 5ml of Ni solution to charge the column. The column turns green. </br>
+
7. Add 5 ml of NiCl<sub>2</sub> solution to charge the column. The column turns green. </br>
 
8. Wash with 20 ml of water </br>
 
8. Wash with 20 ml of water </br>
9. Sonicate the sample three times one minute at 60%, wait 90 seconds between each sonication, Finally, the sample is 40 ml, add 40 &microL of PMSF to avoid protein denaturation. </br>
+
9. Sonicate the sample three times one minute at 60%, wait 90 seconds between each sonication, Finally, the sample volume is 40 ml, add 40 &micro;l of PMSF to avoid protein degradation by proteases. </br>
10. Centrifuge 25 min at 16000 g (rotor JA 25.50) </br>
+
10. Centrifuge 25 min at 16000g (Beckman rotor JA 25.50) </br>
11. Inject your sample in the FPLC </br>
+
11. Inject the sample on the column of the FPLC </br>
12. Get back several samples: </br>
+
12. Save several stages as frozen samples for later analysis: </br>
 
&bull; C= Crude extract : before centrigugation </br>
 
&bull; C= Crude extract : before centrigugation </br>
 
&bull; P= Pellet </br>
 
&bull; P= Pellet </br>
Line 502: Line 502:
 
     <figcaption>
 
     <figcaption>
  
<p ><U> Aim:</U> Get the size of the protein purified thanks to FPLC in order to know if it is our protein  </br></br>
+
<p ><U> Aim:</U> Get the size of the protein purified thanks to the FPLC in order to know if it is our protein  </br></br>
  
 
<U>What we did in the lab:</U>
 
<U>What we did in the lab:</U>
Line 510: Line 510:
 
<U>Materials:</U>
 
<U>Materials:</U>
 
</br>
 
</br>
&bull; SDS-Page cuve </br>
+
&bull; SDS-PAGE chamber </br>
&bull; SDS-Page gel (BIORAD) </br>
+
&bull; SDS-PAGE 4-15 &#37; gradient gel (BIORAD) </br>
 
&bull; Protein migration buffer </br>
 
&bull; Protein migration buffer </br>
&bull; Protein ladder </br>
+
&bull; Protein PAGE ruler plsu (Thermofisher)Ladder </br>
 
&bull; Laemmli 2X </br>
 
&bull; Laemmli 2X </br>
&bull; Coomassie Blue </br>
+
&bull; Gel code blue (Coomassie Blue G250)</br>
 
&bull; Microbiology equipment (Follow this link) </br> </br>
 
&bull; Microbiology equipment (Follow this link) </br> </br>
  
 
<U>Method:</U></br>
 
<U>Method:</U></br>
1. In 9 1.5 ml eppendorf, put 20 &#181;L of a sample and 20 &#181;L of Laemmli 2X. </br>
+
1. In 9 1.5 ml eppendorf, put 20 &#181;l of a sample and 20 &#181;l of Laemmli 2X. </br>
 
2. Place the gel into the cuve and fill it with migration buffer </br>
 
2. Place the gel into the cuve and fill it with migration buffer </br>
 
3. Follow the next deposit table: </br>
 
3. Follow the next deposit table: </br>
Line 538: Line 538:
  
 
<U>Method:</U></br>
 
<U>Method:</U></br>
We notice a 30kDa band in the well 9 and 10 so we redo a gel with the fractions 21 to 25. Follow exactly the same protocol but with 30 &microL of DNA and 30 &microL of Laemmli 2X. </br>
+
We notice a 30kDa band in the well 9 and 10 so we redo a gel with the fractions 21 to 25. Follow exactly the same protocol but with 30 &micro;l of DNA and 30 &micro;l of Laemmli 2X. </br>
 
Deposit table: </br>
 
Deposit table: </br>
 
- Protein ruler 8 &#181;l </br>
 
- Protein ruler 8 &#181;l </br>
Line 550: Line 550:
 
- Fraction 26 </br>
 
- Fraction 26 </br>
 
- Fraction 27 </br>
 
- Fraction 27 </br>
We notice a 30kDa band in the fractions 19 to 21 that may correspond to our protein and a 70kDa band due to NusA in fractions 23 to 25.</br> </br>
+
We notice a 30kDa band in the fractions 19 to 21 that may correspond to our protein and a 70 kDa band due to NusA in fractions 23 to 25.</br> </br>
 
</p>
 
</p>
 
</figcaption>
 
</figcaption>
Line 580: Line 580:
  
 
<U>Method:</U></br>
 
<U>Method:</U></br>
17. One colony is picked from the plates and shaken in 3 ml of LB supplemented with Carbenicillin at 50 &#181;g/ml. This step is done with the inserts A1/A2/D1/D2/C2 and  two colonies B1. </br>
+
17. One colony is picked from the plates and shaken in 3 ml of LB supplemented with carbenicillin at 50 &#181;g/ml. This step is done with the inserts A1/A2/D1/D2/C2 and  two colonies B1. </br>
 
18. The Falcon tube is placed in a shaking incubator at 37°C, 150 rpm overnight. </br> </br>
 
18. The Falcon tube is placed in a shaking incubator at 37°C, 150 rpm overnight. </br> </br>
 
</p>
 
</p>
Line 609: Line 609:
  
 
<U>Method:</U></br>
 
<U>Method:</U></br>
  The protocol in step 1 ask for spinning at 6000 g but we can only achieve 3500 g so we used 3500 g for 8 minutes. We will follow most of the protocol of QIAGEN Miniprep 2016 except for a few modifications, which we describe, therefore, below. </br>
+
  The protocol in step 1 ask for spinning at 6000g but we can only achieve 3500g so we used 3500g for 8 minutes. We will follow most of the protocol of QIAGEN Miniprep 2016 except for a few modifications, which we describe, therefore, below. </br>
  
 
19. Follow QIAGEN kit steps </br> </br>
 
19. Follow QIAGEN kit steps </br> </br>
Line 637: Line 637:
  
 
<U>Method:</U></br>
 
<U>Method:</U></br>
Analyze absorbance at 260nm</br>
+
Analyze absorbance at 260 nm</br>
 
1. Clean the Nanodrop with water</br>
 
1. Clean the Nanodrop with water</br>
 
2. Make the blank with 1 &#181;l of elution buffer</br>
 
2. Make the blank with 1 &#181;l of elution buffer</br>
3. Put 1ul of your sample on the Nanodrop</br>
+
3. Put 1 &181;l of your sample on the Nanodrop</br>
 
4. Make the measure and clean the Nanodrop between each measure</br></br>
 
4. Make the measure and clean the Nanodrop between each measure</br></br>
  
Line 695: Line 695:
 
</br>
 
</br>
  
&bull; Restriction enzymes: XbaI, HindIII (New England Biolabs, NEB) </br>
+
&bull; Restriction enzymes: Xba I, Hind III (New England Biolabs, NEB) </br>
 
&bull; Restriction enzyme buffers </br>
 
&bull; Restriction enzyme buffers </br>
 
&bull; 37°C water bath </br>
 
&bull; 37°C water bath </br>
Line 717: Line 717:
 
     <tr>
 
     <tr>
 
       <td><strong><p>Vol<sub>DNA</sub></p></strong></td>
 
       <td><strong><p>Vol<sub>DNA</sub></p></strong></td>
       <td>30  &#181;L </td>
+
       <td>30  &#181;l </td>
 
     </tr>
 
     </tr>
 
     <tr>
 
     <tr>
 
       <td><strong><p>Vol<sub>XbaI</sub></p></strong></td>
 
       <td><strong><p>Vol<sub>XbaI</sub></p></strong></td>
       <td>1  &#181;L</td>
+
       <td>1  &#181;l</td>
 
     </tr>
 
     </tr>
 
     <tr>
 
     <tr>
 
       <td><strong><p>Vol<sub>HindIII</sub></p></strong></td>
 
       <td><strong><p>Vol<sub>HindIII</sub></p></strong></td>
       <td>1  &#181;L </td>
+
       <td>1  &#181;l </td>
 
     </tr>
 
     </tr>
 
     <tr>
 
     <tr>
Line 733: Line 733:
 
     <tr>
 
     <tr>
 
       <td><strong><p>Vol<sub>Buffer Cutsmart (10X)</sub></p></strong></td>
 
       <td><strong><p>Vol<sub>Buffer Cutsmart (10X)</sub></p></strong></td>
       <td>5  &#181;L </td>
+
       <td>5  &#181;l </td>
 
     </tr>
 
     </tr>
 
     <tr>
 
     <tr>
 
       <td><strong><p>Vol<sub>total</sub></p></strong></td>
 
       <td><strong><p>Vol<sub>total</sub></p></strong></td>
       <td>50  &#181;L </td>
+
       <td>50  &#181;l </td>
 
   </tbody>
 
   </tbody>
 
</table>
 
</table>
Line 769: Line 769:
 
&bull; TAE 1X </br>
 
&bull; TAE 1X </br>
 
&bull; Gene ruler (Thermoscientific 1kb plus) </br>
 
&bull; Gene ruler (Thermoscientific 1kb plus) </br>
&bull; Loading dye </br>
+
&bull; Loading dye 6X</br>
 
&bull; Agarose </br>
 
&bull; Agarose </br>
 
&bull; UV table </br>
 
&bull; UV table </br>
Line 776: Line 776:
  
 
<U>Method:</U></br>  
 
<U>Method:</U></br>  
Each well will contain 30 &#181;L of DNA and 6 &#181;L of Loading Dye. </br>  
+
Each well will contain 30 &#181;l of DNA and 6 &#181;l of Loading Dye. </br>  
 
Follow the next deposit table :</br>  
 
Follow the next deposit table :</br>  
 
Loading dye (6 &#181;L ) / A1 (1) / A1 (2) / A1 (3) / A1 (4) / D1 (1) / D1 (2) / D2 (2)</br>  
 
Loading dye (6 &#181;L ) / A1 (1) / A1 (2) / A1 (3) / A1 (4) / D1 (1) / D1 (2) / D2 (2)</br>  
Line 854: Line 854:
 
4. Centrifuge (30 min, 15 000g, at RT)</br>
 
4. Centrifuge (30 min, 15 000g, at RT)</br>
 
5. Remove isopropanol with pipet without taking DNA and place into chemical waste container</br>
 
5. Remove isopropanol with pipet without taking DNA and place into chemical waste container</br>
6. Add 1 ml of 70% ethanol, centrifuge again (15 min, 15 000 g, RT) and let air dry</br>
+
6. Add 1 ml of 70% ethanol, centrifuge again (15 min, 15 000g, RT) and let air dry</br>
7. Resuspend in 50 &microL of Tris 10 mM pH 8.0, EDTA, 1 mM (TE) and store at -20°C</br></br>
+
7. Resuspend in 50 &micro;l of Tris 10 mM pH 8.0, EDTA 1 mM (TE) and store at -20°C</br></br>
 
</p>
 
</p>
 
</figcaption>
 
</figcaption>
Line 881: Line 881:
 
Analyze absorbance at 260 nm</br>
 
Analyze absorbance at 260 nm</br>
 
15. Clean the Nanodrop with water</br>
 
15. Clean the Nanodrop with water</br>
16. Make the blank with 1ul of elution buffer</br>
+
16. Make the blank with 1 &micro;l of elution buffer</br>
 
17. Put 1ul of your sample on the Nanodrop</br>
 
17. Put 1ul of your sample on the Nanodrop</br>
 
18. Make the measure and clean the Nanodrop between each measure</br></br>
 
18. Make the measure and clean the Nanodrop between each measure</br></br>
Line 898: Line 898:
 
   <tbody>
 
   <tbody>
 
     <tr>
 
     <tr>
       <td><strong><p>A<sub>260</sub></p></strong></td>
+
       <td><strong><p>A<sub>260 nm</sub></p></strong></td>
 
       <td>1.057/td>
 
       <td>1.057/td>
 
       <td>1.323</td>
 
       <td>1.323</td>
Line 905: Line 905:
 
     </tr>
 
     </tr>
 
     <tr>
 
     <tr>
       <td><strong>A<sub>280</sub></strong></td>
+
       <td><strong>A<sub>280 nm</sub></strong></td>
 
       <td>0.627</td>
 
       <td>0.627</td>
 
       <td>0.698</td>
 
       <td>0.698</td>
Line 912: Line 912:
 
     </tr>
 
     </tr>
 
     <tr>
 
     <tr>
       <td><strong>A<sub>260</sub>/A<sub>280</sub></strong></td>
+
       <td><strong>A<sub>260 nm</sub>/A<sub>280 nm</sub></strong></td>
 
       <td>1.69</td>
 
       <td>1.69</td>
 
       <td>1.89</td>
 
       <td>1.89</td>
Line 948: Line 948:
 
<U>Materials:</U>
 
<U>Materials:</U>
 
</br>
 
</br>
&bull;  Restriction enzymes: XbaI, HindIII (New England Biolabs, NEB) </br>
+
&bull;  Restriction enzymes: Xba I, Hind III (New England Biolabs, NEB) </br>
 
&bull;  Restriction enzyme buffers </br>
 
&bull;  Restriction enzyme buffers </br>
 
&bull;  37°C water bath </br>
 
&bull;  37°C water bath </br>
Line 970: Line 970:
 
     <tr>
 
     <tr>
 
       <td><strong><p>Vol<sub>DNA</sub></p></strong></td>
 
       <td><strong><p>Vol<sub>DNA</sub></p></strong></td>
       <td>45 &#181;L </td>
+
       <td>45 &#181;l </td>
       <td>0 &#181;L </td>
+
       <td>0 &#181;l </td>
 
     </tr>
 
     </tr>
 
     <tr>
 
     <tr>
       <td><strong><p>Vol<sub>XbaI</sub></p></strong></td>
+
       <td><strong><p>Vol<sub>Xba I</sub></p></strong></td>
       <td>2.25 &#181;L </td>
+
       <td>2.25 &#181;l </td>
       <td>65.25 &#181;L </td>
+
       <td>65.25 &#181;l </td>
 
     </tr>
 
     </tr>
 
     <tr>
 
     <tr>
       <td><strong><p>Vol<sub>HindIII</sub></p></strong></td>
+
       <td><strong><p>Vol<sub>Hind III</sub></p></strong></td>
       <td>2.25 &#181;L </td>
+
       <td>2.25 &#181;l </td>
       <td>65.25 &#181;L </td>
+
       <td>65.25 &#181;l </td>
 
     </tr>
 
     </tr>
 
     <tr>
 
     <tr>
 
       <td><strong><p>Vol<sub>H<span>2</span>O</sub></p></strong></td>
 
       <td><strong><p>Vol<sub>H<span>2</span>O</sub></p></strong></td>
       <td>1.125 &#181;L</td>
+
       <td>1.125 &#181;l</td>
       <td>32.65 &#181;L</td>
+
       <td>32.65 &#181;l</td>
 
     </tr>
 
     </tr>
 
     <tr>
 
     <tr>
 
       <td><strong><p>Vol<sub>Buffer Cutsmart (10X)</sub></p></strong></td>
 
       <td><strong><p>Vol<sub>Buffer Cutsmart (10X)</sub></p></strong></td>
       <td>5.63 &#181;L </td>
+
       <td>5.63 &#181;l </td>
       <td>163.12 &#181;L </td>
+
       <td>163.12 &#181;l </td>
 
     </tr>
 
     </tr>
 
     <tr>
 
     <tr>
 
       <td><strong><p>Vol<sub>total</sub></p></strong></td>
 
       <td><strong><p>Vol<sub>total</sub></p></strong></td>
       <td>56 /&#181;L </td>
+
       <td>56 /&#181;l </td>
       <td>326.27 /&#181;L </td>
+
       <td>326.27 /&#181;l </td>
 
   </tbody>
 
   </tbody>
 
</table>
 
</table>
Line 1,027: Line 1,027:
 
&bull; TAE 1X </br>
 
&bull; TAE 1X </br>
 
&bull; Gene ruler (Thermoscientific 1kb plus) </br>
 
&bull; Gene ruler (Thermoscientific 1kb plus) </br>
&bull; Loading dye </br>
+
&bull; Loading dye 6X</br>
 
&bull; Agarose </br>
 
&bull; Agarose </br>
 
&bull; UV table </br>
 
&bull; UV table </br>
Line 1,036: Line 1,036:
 
Deposit table (/// means EMPTY to make the cut easier) </br>
 
Deposit table (/// means EMPTY to make the cut easier) </br>
  
Gel 1 Line 1 : </br>
+
Gel 1 Lane 1 : </br>
 
Loading dye /// B2(2) / B2(2) /// B2(3) / B2(3) /// B2(4) / B2(4) /// B2(5) / B2(5) /// B2(1) / B2(1) /// B2(6) / B2(6) </br> </br>
 
Loading dye /// B2(2) / B2(2) /// B2(3) / B2(3) /// B2(4) / B2(4) /// B2(5) / B2(5) /// B2(1) / B2(1) /// B2(6) / B2(6) </br> </br>
  
Gel 1 Line 2 : </br>
+
Gel 1 Lane 2 : </br>
 
Loading dye /// B2(7) / B2(7) /// B2(8) / B2(8) /// B2(9) / B2(9) /// B2(10) / B2(10) /// B2(11) / B2(11) /// B2(12) / B2(12) </br> </br>
 
Loading dye /// B2(7) / B2(7) /// B2(8) / B2(8) /// B2(9) / B2(9) /// B2(10) / B2(10) /// B2(11) / B2(11) /// B2(12) / B2(12) </br> </br>
  
  
Gel 2 Line 1 : </br>
+
Gel 2 Lane 1 : </br>
 
Loading dye /// E1(1) / E1(1) /// E1(2) / E1(2) /// E1(3) / E1(3) /// E2(1) / E2(1) /// E2(2) / E2(2) /// E2(3) / E2(3) /// E2(4) / E2(4) /// E2(5) / E2(5) /// E2(6) / E2(6) /// E2(7) / E2(7) </br> </br>
 
Loading dye /// E1(1) / E1(1) /// E1(2) / E1(2) /// E1(3) / E1(3) /// E2(1) / E2(1) /// E2(2) / E2(2) /// E2(3) / E2(3) /// E2(4) / E2(4) /// E2(5) / E2(5) /// E2(6) / E2(6) /// E2(7) / E2(7) </br> </br>
  
Gel 2 Line 2 : </br>
+
Gel 2 Lane 2 : </br>
 
Loading dye /// E2(8) / E2(8) /// E2(9) / E2(9) /// E2(10) / E2(10) /// E2(11) / E2(11) /// E2(12) / E2(12) /// E2(13) / E2(13) /// B2(13) / B2(13) /// B2(14) / B2(14) /// </br> </br>
 
Loading dye /// E2(8) / E2(8) /// E2(9) / E2(9) /// E2(10) / E2(10) /// E2(11) / E2(11) /// E2(12) / E2(12) /// E2(13) / E2(13) /// B2(13) / B2(13) /// B2(14) / B2(14) /// </br> </br>
 
</p>
 
</p>

Revision as of 16:09, 19 October 2016