Difference between revisions of "Team:Hannover/Reference"

m
Line 64: Line 64:
 
<li>Boch, J. (2011). TALEs of genome targeting. Nature Biotechnology , 29 (2), pp. 135-136.</li>
 
<li>Boch, J. (2011). TALEs of genome targeting. Nature Biotechnology , 29 (2), pp. 135-136.</li>
  
<li>Boch, J., & al. (2009). Breaking the Code of DNA Binding Specificity of TAL-Type III Effectors. Science (326), pp. 1509-1512.</li>
+
<li>Boch, J. et al. (2009). Breaking the Code of DNA Binding Specificity of TAL-Type III Effectors. Science (326), pp. 1509-1512.</li>
  
<li>Boch, J., & al. (2009). Breaking the Code of DNA Binding Specificity of TAL-Type III Effectors. Science (326), pp. 1509-1512.</li>
+
<li>Boch, J., et al. (2009). Breaking the Code of DNA Binding Specificity of TAL-Type III Effectors. Science (326), pp. 1509-1512.</li>
  
 
<li>Camarero, J. A., Fushman, D., Cowburn, D., & Muir, T. W. (2001). Peptide Chemical Ligation Inside Living Cells: In Vivo Generation of a Circular Protein Domain. Bioorganic & Medicinal Chemistry , pp. 2479-2484.</li>
 
<li>Camarero, J. A., Fushman, D., Cowburn, D., & Muir, T. W. (2001). Peptide Chemical Ligation Inside Living Cells: In Vivo Generation of a Circular Protein Domain. Bioorganic & Medicinal Chemistry , pp. 2479-2484.</li>
Line 74: Line 74:
 
<li>Evans, T. C., Benner, J., & Xu, M.-Q. (1999). The Cyclization and Polymerisation of Bacterially Expressed Proteins Using Modified Self-splicing Inteins. The Journal of Biological Chemistry , 274 (26), pp. 18359-18363.</li>
 
<li>Evans, T. C., Benner, J., & Xu, M.-Q. (1999). The Cyclization and Polymerisation of Bacterially Expressed Proteins Using Modified Self-splicing Inteins. The Journal of Biological Chemistry , 274 (26), pp. 18359-18363.</li>
  
<li>Geissler, R., & al. (2011). Transcriptional Activators of Human Genes with Programmable DNA-Specificity. PLOS one.</li>
+
<li>Geissler, R. et al. (2011). Transcriptional Activators of Human Genes with Programmable DNA-Specificity. PLOS one.</li>
 
+
<li>Heidelberg, i. T. (2014). The Ring of Fire. Retrieved 10 13, 2016, from CIRCULARIZATION - Transforming an enzyme into a ring of fire: https://2014.igem.org/Team:Heidelberg/Toolbox/Circularization</li>
+
  
 
<li>Hirschler, B. (2016, May). Second baby gets Cellectis "designer" cells to clear leukemia. Retrieved 10 13, 2016, from Reuters: http://www.reuters.com/article/us-health-celltherapy-idUSKCN0XX1F7</li>
 
<li>Hirschler, B. (2016, May). Second baby gets Cellectis "designer" cells to clear leukemia. Retrieved 10 13, 2016, from Reuters: http://www.reuters.com/article/us-health-celltherapy-idUSKCN0XX1F7</li>
Line 82: Line 80:
 
<li>Iwai, H., Lingel, A., & Plückthun, A. (2001). Cyclic Green Fluorescent Protein Produced in Vivo Using an Artificially Split PI-PfuI Intein from Pyrococcus furiosus. The Journal of Biological Chemistry , 276 (19), pp. 16548-16554.</li>
 
<li>Iwai, H., Lingel, A., & Plückthun, A. (2001). Cyclic Green Fluorescent Protein Produced in Vivo Using an Artificially Split PI-PfuI Intein from Pyrococcus furiosus. The Journal of Biological Chemistry , 276 (19), pp. 16548-16554.</li>
  
<li>Lonzaric, J., & al. (2016). Locked and proteolysis-based transcription activator-like effector (TALE) regulation. Nucleic Acids Research , 44 (3), pp. 1471-1481.</li>
+
<li>iGEM Team Heidelberg (2014). The Ring of Fire. Retrieved 10 13, 2016, from CIRCULARIZATION - Transforming an enzyme into a ring of fire: https://2014.igem.org/Team:Heidelberg/Toolbox/Circularization</li>
 +
 
 +
<li>Lonzaric, J. et al. (2016). Locked and proteolysis-based transcription activator-like effector (TALE) regulation. Nucleic Acids Research , 44 (3), pp. 1471-1481.</li>
  
<li>Miller, J., & al. (2011). A TALE nuclease architecture for efficient genome editing. Nature Biotechnology , 29 (2), pp. 143-148.</li>
+
<li>Miller, J. et al. (2011). A TALE nuclease architecture for efficient genome editing. Nature Biotechnology , 29 (2), pp. 143-148.</li>
  
 
<li>Muir, T. W. (2003). Semisynthesis of proteins by expressed protein ligation. Annu. Rev. Biochem. (72), pp. 249-289.</li>
 
<li>Muir, T. W. (2003). Semisynthesis of proteins by expressed protein ligation. Annu. Rev. Biochem. (72), pp. 249-289.</li>
Line 90: Line 90:
 
<li>Office, G.-I. P. (2015, September). World first use of gene-edited immune cells to treat ‘incurable’ leukemia. Retrieved 10 13, 2016, from Great Ormond Street Hospital for Children: http://www.gosh.nhs.uk/news/press-releases/2015-press-release-archive/world-first-use-gene-edited-immune-cells-treat-incurable-leukaemia</li>
 
<li>Office, G.-I. P. (2015, September). World first use of gene-edited immune cells to treat ‘incurable’ leukemia. Retrieved 10 13, 2016, from Great Ormond Street Hospital for Children: http://www.gosh.nhs.uk/news/press-releases/2015-press-release-archive/world-first-use-gene-edited-immune-cells-treat-incurable-leukaemia</li>
  
<li>Qasim, W., & al. (2015). First Clinical Application of Talen Engineered Universal CAR19 T Cells in B-ALL. Blood , 126 (23), p. 2046.</li>
+
<li>Qasim, W. et al. (2015). First Clinical Application of Talen Engineered Universal CAR19 T Cells in B-ALL. Blood , 126 (23), p. 2046.</li>
  
 
<li>Specter, M. (2016, August). How the DNA Revolution Is Changing Us. Retrieved 10 13, 2016, from National Geographic: http://www.nationalgeographic.com/magazine/2016/08/dna-crispr-gene-editing-science-ethics/</li>
 
<li>Specter, M. (2016, August). How the DNA Revolution Is Changing Us. Retrieved 10 13, 2016, from National Geographic: http://www.nationalgeographic.com/magazine/2016/08/dna-crispr-gene-editing-science-ethics/</li>
  
<li>Streubel, J., & al. (2013). TALEs - Proteine mit programmierbarer DNA-Bindespezifität. BIOspektrum , 2013 (4), pp. 370-373.</li>
+
<li>Streubel, J. et al. (2013). TALEs - Proteine mit programmierbarer DNA-Bindespezifität. BIOspektrum , 2013 (4), pp. 370-373.</li>
  
 
<li>Tavassoli, A., & Benkovic, S. J. (2007). Split-intein mediated circular ligation use in the synthesis of cyclic peptide libraries in E. coli. Nature Protocols , 2 (5), pp. 1126-1133.</li>
 
<li>Tavassoli, A., & Benkovic, S. J. (2007). Split-intein mediated circular ligation use in the synthesis of cyclic peptide libraries in E. coli. Nature Protocols , 2 (5), pp. 1126-1133.</li>
  
<li>Weber, E., & al. (2011). Assembly of Designer TAL Effectors by Golden Gate Cloning. PloS One , 6 (5).</li>
+
<li>Weber, E. et al. (2011). Assembly of Designer TAL Effectors by Golden Gate Cloning. PloS One , 6 (5).</li>
  
 
<li>Williams, N. K. (2002). In Vivo Protein Cyclization Promoted by a Circularly Permuted Synechocystis sp. PCC6803 DnaB Mini-intein. The Journal of Biological Chemistry , 227 (10), pp. 7790-7798.</li>
 
<li>Williams, N. K. (2002). In Vivo Protein Cyclization Promoted by a Circularly Permuted Synechocystis sp. PCC6803 DnaB Mini-intein. The Journal of Biological Chemistry , 227 (10), pp. 7790-7798.</li>

Revision as of 17:19, 19 October 2016

References

  1. Boch, J. (2011). TALEs of genome targeting. Nature Biotechnology , 29 (2), pp. 135-136.
  2. Boch, J. et al. (2009). Breaking the Code of DNA Binding Specificity of TAL-Type III Effectors. Science (326), pp. 1509-1512.
  3. Boch, J., et al. (2009). Breaking the Code of DNA Binding Specificity of TAL-Type III Effectors. Science (326), pp. 1509-1512.
  4. Camarero, J. A., Fushman, D., Cowburn, D., & Muir, T. W. (2001). Peptide Chemical Ligation Inside Living Cells: In Vivo Generation of a Circular Protein Domain. Bioorganic & Medicinal Chemistry , pp. 2479-2484.
  5. Camarero, J. A., Fushman, D., Cowburn, D., & Muir, T. W. (2001). Peptide Chemical Ligation Inside Living Cells: In Vivo Generation of a Circular Protein Domain. Bioorganic & Medicinal Chemistry , pp. 2479-2484.
  6. Evans, T. C., Benner, J., & Xu, M.-Q. (1999). The Cyclization and Polymerisation of Bacterially Expressed Proteins Using Modified Self-splicing Inteins. The Journal of Biological Chemistry , 274 (26), pp. 18359-18363.
  7. Geissler, R. et al. (2011). Transcriptional Activators of Human Genes with Programmable DNA-Specificity. PLOS one.
  8. Hirschler, B. (2016, May). Second baby gets Cellectis "designer" cells to clear leukemia. Retrieved 10 13, 2016, from Reuters: http://www.reuters.com/article/us-health-celltherapy-idUSKCN0XX1F7
  9. Iwai, H., Lingel, A., & Plückthun, A. (2001). Cyclic Green Fluorescent Protein Produced in Vivo Using an Artificially Split PI-PfuI Intein from Pyrococcus furiosus. The Journal of Biological Chemistry , 276 (19), pp. 16548-16554.
  10. iGEM Team Heidelberg (2014). The Ring of Fire. Retrieved 10 13, 2016, from CIRCULARIZATION - Transforming an enzyme into a ring of fire: https://2014.igem.org/Team:Heidelberg/Toolbox/Circularization
  11. Lonzaric, J. et al. (2016). Locked and proteolysis-based transcription activator-like effector (TALE) regulation. Nucleic Acids Research , 44 (3), pp. 1471-1481.
  12. Miller, J. et al. (2011). A TALE nuclease architecture for efficient genome editing. Nature Biotechnology , 29 (2), pp. 143-148.
  13. Muir, T. W. (2003). Semisynthesis of proteins by expressed protein ligation. Annu. Rev. Biochem. (72), pp. 249-289.
  14. Office, G.-I. P. (2015, September). World first use of gene-edited immune cells to treat ‘incurable’ leukemia. Retrieved 10 13, 2016, from Great Ormond Street Hospital for Children: http://www.gosh.nhs.uk/news/press-releases/2015-press-release-archive/world-first-use-gene-edited-immune-cells-treat-incurable-leukaemia
  15. Qasim, W. et al. (2015). First Clinical Application of Talen Engineered Universal CAR19 T Cells in B-ALL. Blood , 126 (23), p. 2046.
  16. Specter, M. (2016, August). How the DNA Revolution Is Changing Us. Retrieved 10 13, 2016, from National Geographic: http://www.nationalgeographic.com/magazine/2016/08/dna-crispr-gene-editing-science-ethics/
  17. Streubel, J. et al. (2013). TALEs - Proteine mit programmierbarer DNA-Bindespezifität. BIOspektrum , 2013 (4), pp. 370-373.
  18. Tavassoli, A., & Benkovic, S. J. (2007). Split-intein mediated circular ligation use in the synthesis of cyclic peptide libraries in E. coli. Nature Protocols , 2 (5), pp. 1126-1133.
  19. Weber, E. et al. (2011). Assembly of Designer TAL Effectors by Golden Gate Cloning. PloS One , 6 (5).
  20. Williams, N. K. (2002). In Vivo Protein Cyclization Promoted by a Circularly Permuted Synechocystis sp. PCC6803 DnaB Mini-intein. The Journal of Biological Chemistry , 227 (10), pp. 7790-7798.
  21. Wood, D. W., & Camarero, J. A. (2014). Intein Applications: From Protein Purification and Labeling to Metabolic Control Methods. The Journal of Biological Chemistry , 289 (21), pp. 14512-14519.
Sponsors

Our project would not have been possible without financial support from multiple sponsors and supporters.
Carl Roth IDT Leibniz University Hannover Leibniz Universitätsgesellschaft e.V. New England Biolabs Promega Sartorius SnapGene