Line 69: | Line 69: | ||
<h2> Put it in a Box</h2> | <h2> Put it in a Box</h2> | ||
<p class = "main"> | <p class = "main"> | ||
− | Bacterial microcompartments (BMCs) occur in nature to encapsulate enzymatic and metabolic processes in organisms such as E. | + | Bacterial microcompartments (BMCs) occur in nature to encapsulate enzymatic and metabolic processes in organisms such as <i>E.Coli</i>. We have focused our work on the simplest BMC, the ethanolamine utilization compartment (EUT). Our goal is to engineer the an improved and <a href="#999">simplified EUT</a> that requires minimal genes and can <a href="#9999"> assemble and disassemble</a> by the introducing a non-natural amino acid into the outer shell protein.</p> |
<figure align="center"> | <figure align="center"> | ||
Line 91: | Line 91: | ||
Previous research has shown successful changes in chaperonin conformation by crosslinking cysteine residues with a light activated azobenzene - dimaleimide. At 450 nm azo-benzene will primarily be in its longer trans state but when exposed to 365 nm light, azo-benzene has a pinched cis conformation. This previous research demonstrated that taking advantage of these two conformations can be used to "close" and "open" a chaperonin. Towards the same end, we will be replacing amino acids within the EutS structure with azo-phenylalanine, a similar 'azobenzene' chemical structure linked to a phenylalanine amino acid, to create steric hindrance caused by cis to trans isomerization. If placed correctly in the EutS protein, this azobenzene containing residue could be used to prevent or allow the formation of EutS compartments. </p> | Previous research has shown successful changes in chaperonin conformation by crosslinking cysteine residues with a light activated azobenzene - dimaleimide. At 450 nm azo-benzene will primarily be in its longer trans state but when exposed to 365 nm light, azo-benzene has a pinched cis conformation. This previous research demonstrated that taking advantage of these two conformations can be used to "close" and "open" a chaperonin. Towards the same end, we will be replacing amino acids within the EutS structure with azo-phenylalanine, a similar 'azobenzene' chemical structure linked to a phenylalanine amino acid, to create steric hindrance caused by cis to trans isomerization. If placed correctly in the EutS protein, this azobenzene containing residue could be used to prevent or allow the formation of EutS compartments. </p> | ||
− | <p class = "main"> Successful microscopy has confirmed the viability of EutS and EutC-eGFP in E.Coli, as shown below, but the laser used to excite eGFP may also cause conformational change of azo-phenylalanine. In the future we hope to use a fluorescent protein in the far-red spectrum to visualize the formation and destruction of EutS microcompartments. Our future work will focus on the implementation of a multiconstruct system with EutS, EutC1-19 with a new far-red fluorescent protein, and a third construct that creates tRNA’s to integrate azobenzene into the EutS at locations we expect to see just the right level of steric hindrance. </p> | + | <p class = "main"> Successful microscopy has confirmed the viability of EutS and EutC-eGFP in <i>E.Coli</i>, as shown below, but the laser used to excite eGFP may also cause conformational change of azo-phenylalanine. In the future we hope to use a fluorescent protein in the far-red spectrum to visualize the formation and destruction of EutS microcompartments. Our future work will focus on the implementation of a multiconstruct system with EutS, EutC1-19 with a new far-red fluorescent protein, and a third construct that creates tRNA’s to integrate azobenzene into the EutS at locations we expect to see just the right level of steric hindrance. </p> |
<figure align="center"> | <figure align="center"> |
Latest revision as of 23:40, 19 October 2016
Put it in a Box
Bacterial microcompartments (BMCs) occur in nature to encapsulate enzymatic and metabolic processes in organisms such as E.Coli. We have focused our work on the simplest BMC, the ethanolamine utilization compartment (EUT). Our goal is to engineer the an improved and simplified EUT that requires minimal genes and can assemble and disassemble by the introducing a non-natural amino acid into the outer shell protein.