<h3> Mutation of EutS Sequence to introduce Amber stop codons </h3>
<h3> Mutation of EutS Sequence to introduce Amber stop codons </h3>
<p class = "main">
<p class = "main">
−
Using site directed mutagenesis, we changed the sequence of our EutS Low plasmid construct to instead use a Mid promoter, and we introduced amber stop codons into the sequence of EutS at residues that we selected based on predictive protein modelling with Rosetta and Pymol. Sequencing confirmed that several of these plasmids were successfully mutated at the loci we selected, including the part EutS Mutant C (BBa_2129002) which we characterized more fully with our three plasmid system and fluorescent microscopy. </p>
+
Using site directed mutagenesis, we changed the sequence of our EutS Low plasmid construct to instead use a Mid promoter, and we introduced amber stop codons into the sequence of EutS at residues that we selected based on predictive protein modelling with Rosetta and Pymol. Sequencing confirmed that several of these plasmids were successfully mutated at the loci we selected, including the part EutS G26-Amber (BBa_2129002) which we characterized more fully with our three plasmid system and fluorescent microscopy. </p>
We set out at the beginning of the summer with the aim of consistently producing a bacterial microcompartment from a single protein, with the objective of adding a non-canonical amino acid at a point within its sequence that enables us to break these self-forming compartments apart using light. We have produced the following results:
1. We have successfully produced a one-protein BioBrick compatible part that forms microcompartments (EutS, BBa_K2129001)
2. We have tested and demonstrated the results of different expression levels of our EutS compartment with variable levels of tagged eGFP using a variable two-plasmid system and a variety of promoters (BBa_K2129003-K2129007)
3. We successfully mutated amber stop codons at at least three loci in the EutS gene
4. We introduced a 3-plasmid system using the AzoPhe pEVOL plasmid and then visualized the results of adding irradiated phenylalanine-4’-azobenzene to the medium of cells with the mutated plasmids
5. We attempted to produce similar results using genome modification of NEB-5alpha e.coli cells, and produced a library of genomic edits towards this end.
Construction of the EutS BioBrick compatible part
Using the part EutSMNLK (BBa_K311004), we PCR amplified out the S protein of the operon and cloned it alone onto a plasmid backbone. Testing using our two-plasmid system has demonstrated that EutS does indeed produce localization of EutC tagged fluorescent proteins, as described in Schmidt-Dannert et al. 2016 (PMID: 27063436). Our system is fully BioBrick compatible and extremely simple, producing localization and compartmentalization with a minimum of necessary protein expression.