Project Description
The main working components of this module is the VP-EL222 gene and the Pmcl1 promoter. Both components will be introduced to M. anisopliae on the plasmid pBARGPE1. VP-EL222 is a protein that contains a blue-light inducible LOV domain and a transcriptional activator domain responsible for the activation of the execution module. Pmcl1 is a hemolymph-induced promoter from M. anisopliae that activates when the mycelium enters the hemolymph of its host. Limiting the production of the VP-EL222 protein, which will be under the control of Pmcl1, to only after the fungus has successfully penetrated the hosts’ cuticle. This allows the fungi to proliferate in the darkness of the hemolymph. However, when the fungi reaches the end of its life cycle, it must penetrate the insect’s cuticle from the inside to produce conidia on the surface of the host’s cuticle, which puts the mycelium in contact with sunlight. This is when VP-EL222 proteins will dimerize and activate the CRISPR-Cas9 execution module.
2. CRISPR-Cas9 execution module:
After transforming M. anisopliae, we will be inoculating that carries the kill switch system onto two species of insect, Bactrocera dorsalis and Spodoptera litura, to ensure that the whole system functions as intended.