Team:DTU-Denmark/substrate

New HTML template for the wiki




Bootstrap Example

Substrate

As the substrate utilization of Y. lipolytica is central to our project we have done an array of growth experiments. We have tested the growth on simple media to determine strengths and weaknesses in the catabolism of Y. lipolytica. We further expanded on the research by acquiring real waste streams and byproducts form organic industrial productions in the Nordic countries.


Introduction

The dimorphic, non-conventional yeast Yarrowia lipolytica, belonging to the Ascomyceta phylum, was first isolated in 1960s from lipid-rich materials, hence the name “lipolytica”. The organism was classified and reclassified a number of times, first as Candida lipolytica, then Endomycopsis lipolytica, Saccharomycopsis lipolytica and finally Yarrowia lipolytica1. Figure 1 shows Y. lipolytica cells under a microscope. The magnification factor is 100x.

DESCRIPTION
Figure 1: This figure shows Y.lipolytica in plactonic growth with 100x magnification

In recent years Y. Lipolytica has received increased attention from researchers, as studies have found it to possess great potential for producing industrial enzymes and pharmaceutical proteins Biotechnological applications of Yarrowia lipolytica: Past, present and future. This potential is a result of several advantages Y. Lipolytica has over the conventional yeast S. cerevisiae. Y. Lipolytica prefer secreting proteins through the co-transcription pathway and does so very efficiently2, it does not exhibit hyperglycosylation as S. cerevisiae3. Y. Lipolytica has also been shown to exhibit excellent characteristics for the production of value-added chemicals such as a long range of organic acids and polyols Biotechnological applications of Yarrowia lipolytica: Past, present and future, and the recent introduction of several genome-scale models for Y. Lipolytica will most likely lead to more processes utilizing the chassis for production. Perhaps the most important advantage for using Y. Lipolytica over S. cerevisiae, to our project at least, is the broad substrate utilization range of Y. Lipolytica. Y. Lipolytica is known to naturally utilize alcohols (especially glycerol), acetate and hydrophobic substrates (eg. alkanes, fatty acids and oils) as carbon sources4. This has naturally lead to Y. Lipolytica becoming a model organism for several metabolic pathways, especially fatty acid transport and metabolism, and single cell oil (SCO) accumulation. Y. Lipolytica has even been shown to exhibit enhanced growth on mixed substrates Yarrowia lipolytica as an oleaginous cell factory platform for production of fatty acid-based biofuel and bioproducts, which renders it ideal for utilization of industrial waste streams due to the highly diverse content of these. These findings had us believe that we had found an excellent candidate chassis for our project. The table shows a comparison of the substrate range of Y. Lipolytica W29 and S. cerevisiae CEN.PK113-7D.

Y. Lipolytica S. cerevisiae
Sediment from canola oil production µ = 0.31 None
Glycerol from Perstop µ = 0.27 None
Glycerol from Emmelev µ = 0.45 None
Glycerol from Daka µ = 0.31 None
Molasses from Dansukker µ = 0.42* µ = 0.47

* it should be noted that the molasses was autoclaved thus degrading some of the sucrose content. This growth might not be possible to replicate with untreated molasses.

As seen in the table Y. Lipolytica is able to grow on all the waste sources we tested, while S. cerevisiae is only able to grow on molasses.

Methods

Each growth experiment (for Y. Lipolytica and S. cerevisiae) is conducted according to the following:

Minimal medium is produced as stated by Mhairi Workman5 using a C-source concentration of 20 g/L was used all for growth experiments.

The cells were grown overnight in YPD medium, and prepared by spinning down and washed twice. The preculture was then used as inoculum for minimal medium (substituents) to a final concentration of 0,001 (OD600). The cultivations were carried out in a cytometer (brand) shaking 900 rpm at 30℃ (86℉). Cultures were grown, shaked and measured in 48 well microtitre plates (Cellstar). Measurements was carried out by a Hamilton Robot, (cpe201, Hamilton industries) connected to a BioTek spectrophotometer (See protocols here). OD600 Measurements were taken every 2 hours until the cultures reached stationary phase, and data was analysed using R-studio as is visualised in figure 2.

DESCRIPTION
Figure 2: A. Overnight culture: strains of Y. lipolytica and S. cerevisiae are grown in YPD media overnight at 30℃ (86&#8457) to ensure balanced growth and comparable data. B. Washing- and inoculation steps: Cells are spinned down and washed to ensure removal of carbon-sources and other metabolites from the overnight-culturing. Washing and spinning step is repeated. Simple and complex substrates are inoculated with cells in 48 well suspension culture plates. The cells reaches final OD600 0,001 C. Growth-experiment: Plates are incubated and shaken at 900 rpm in a cytometer and before measurement ofOD in a spectrophotometer. Data are recorded and compiled every two hours on an excel sheet. This process is automated using the Hamilton Microlab robot. D. Data analysis and -visualization step: The data excel sheet (in step C.) are analyzed and visualized by plots using R-studio..

During the growth experiments we cept to strains that were wild type og close to. This makes the results more general for the organism.

Strains Genotype Comment/source
Y. Lipolytica Wildtype Parent strain to our laboratory bug, PO1f
S. cerevisiae CEN.PK113-7D Derived from parental strains ENY.WA-1A and MC996A,
and is popular for use in systems biology studies

Outline of Proces

DESCRIPTION
Figure 3: Picture of the waste products we recived
DESCRIPTION
Figure 4: Picture of the autoclaved C-source solutions

We performed growth experiments on an array of pure C-sources (seen in figure 3-4) to get a baseline of Y. Lipolytica growth patterns starting to determine the substrate range. In these experiments we observed the following growth rates or lack of growth.

Y. Lipolytica S. cerevisiae
Glucose µ = 0.24 µ = 0.19
Fructose µ = 0.23 µ = 0.426
Glycerol µ = 0.27 None
Canola oil µ = 0.08 None
Sucrose None µ = 0.396
Maltose None Growth7
Xylose None None8
Arabinose None None8
Starch None None

The interesting graphs repressenting these results can be seen in the figures 5-9:

DESCRIPTION
Figure 5: Y. Lipolytica growth on fructose
DESCRIPTION
Figure 6: Y. Lipolytica do not grow on sucrose
DESCRIPTION
Figure 7: Y. Lipolytica growth on Canola oil
DESCRIPTION
Figure 8: Y. Lipolytica growth on fructose
DESCRIPTION
Figure 9: S. cerevisiae growth on glucose


Even though the pure carbon sources suggests that Y. Lipolytica exhibits excellent substrate utilization, we did not know if this translated into utilization of industrial waste streams. To investigate this, we had to get our hands on a few waste streams we could test. We contacted local industry that we knew had waste streams containing either sugars, glycerol og oily constituents. After many phone calls and long meetings, we received the following byproducts of organically based productions:

  • Canola oil sediment
  • Glycerol Perstorp Tech
  • Glycerol Emmelev
  • Glycerol Daka
  • Molasses Dansukker

Industrial Byproduct Screenings

Canola Oil Sediment - Grønningaard

Grønningaard is a canola oil production facility situated on Zealand, Denmark. They produce 100 - 120 tons canola oil annually, and sell the remaining protein rich press cake for animal feed. The oil is derived by cold pressing organic rapeseeds. As cold pressing does not allow for filtering of the oil, small fibres remain in the oil. These fibres are removed by allowing the oil to sediment for 1 month and extracting the sediment. Besides the fibres from the plants and residual oil, the sediment contain, polyaromatic hydrocarbons in too high concentrations making the sediment unsuitable to be recycled in the process or used for animal feed, rendering it a “true waste” in the sense that it is only useful for generating heat through burning. Figure 10 shows an overview of the process. The sediment constitutes 1-1.6% of the biomass of the product, amounting to 1 - 1.92 tons annually. These figures are based on the 4th. biggest producer in denmark Grønninggård. The largest with an estimated 80% market share is not willing to provide production numbers. (Personal communication)

DESCRIPTION
Figure 10: Flow chart for the production of cold pressed canola oil

During the experiments with this substrate we experienced a lot of problems with the od measurements because of the high content of plant fibers. By pressure filtering the sediment we extracted a sample that was transparent. From this sample we showed that Y. Lipolytica grows weary well on this waste stream. S. cerevisiae on the other hand is not able to utilize this carbon source as seen in fitures 11-12.

DESCRIPTION
Figure 11: Y. Lipolytica growth on sediment from canola oil production
DESCRIPTION
Figure 12: S. cerevisiae does not grow on sediment from canola oil production.

This show promising growth of Y. Lipolytica while it is clear that S. cerevisiae is suitable for fermentation based on canola oil sediments

Glycerol Byproduct

In trying to find alternatives to fossil fuels the production of biodiesel have increased tremendously in the last two decades. Biodiesel is produced by ar base-catalyzed transesterification by a short chained alcohol and triacylglycerols derived from natural sources as seen in figure 13. This reaction produces 0.102 kg glycerol pr. liter biodiesel9. The increased production have resulted in a plummeting of glycerol prices making it a promising substrate for industrial fermentation.

DESCRIPTION
Figure 13: Flow chart for production of biodisel and glycerol waste.

Second Generation Biodiesel Facility (DAKA)

The Danish branch of DAKA refines waste streams from the feedstock industry (such as meat and agricultural industry), turning it into products such as fertilizers, animal feed and biodiesel. The biodiesel production is based on animal tallow and fats from the danish meat industry. The glycerol derived from from this production, has a high salt content and a particularly low pH, and therefore requires several purification steps before it can be used in the chemical industry. By adding NaOH raising the pH to 6 we able to make Y. Lipolytica grow fairly well despite of the relatively high salt levels as seen in figure 14. (Personal communication)

DESCRIPTION
Figure 14: Y. Lipolytica growth on glycerol from second generation biodisel
DESCRIPTION
Figure 15: S. cerevisiae does not grow on glycerol.

First Generation Glycerol (Perstorp/ Emmelev)

Perstop has two biodiesel production facilities. One located in Sweden and one in Norway. They produce high quality glycerin and glycerol, that is sold as a component for chemical production. This has a purity of og 98% and the rest is mostly water (Personal communication). This byproduct is also a great substrate for Y. Lipolytica as seen in figure 16.

DESCRIPTION
Figure 16: Y. Lipolytica growth on glycerol from first generation biodisel
DESCRIPTION
Figure 17: S. cerevisiae does not grow on glycerol.

Glycerin from first generation biodiesel facility Emmelev A/S. Emmelev A/S is a local oil mill, first gen. biodiesel plant and glycerin destillor located on the second biggest island in Denmark, Fyn. The glycerin is distilled to 80% purity and sold to the chemical industry (Personal communication) . This is fairly high quality and there are no content inhibiting the growth of Y. Lipolytica as seen in figure 19.

DESCRIPTION
Figure 19: Y. Lipolytica growth on glycerol from first generation biodisel
DESCRIPTION
Figure 20: S. cerevisiae does not grow on glycerol.

In conclution Y. Lipolytica is the only sutable candidate for fermentation based on glycerol.

Molasses

The process of creating refined sugar results in the waste product molasses that is quite applicable. Molasses, the byproduct of the refining of sugarcane or sugar beets into sugar, has a brown color and is sweet flavor do to the high sucrose, glucose and fructose content. There for it is often used prepared meals or animal feed. Molasses is created when the juice from sugar canes is boiled and the crystallized sugar is removed twice as seen in figure 21. As molasses ultimately is a byproduct it will be quite useful to use as a substrate for fermentation.

DESCRIPTION
Figure 21: Flow chart for production of refined sugar and molasses.

As seen in the figure both Y. Lipolytica and S. cerevisiae grow on molasses. Normally Y. Lipolytica does not grow well on sucrose, but there is a high content of glucose and fructose as well. On top of that we realised that sucrose degrades to fructose and glucose when autoclaved. (Personal communication)

DESCRIPTION
Figure 22: Y. Lipolytica growth on molasses from sugar production
DESCRIPTION
Figure 23: S. cerevisiae growth on molasses from sugar production

Bowth organism might be suitable for growt on molasses as seen in figure 22-23, but because S. cerevisiae is able to utilize sucrose it might be the better choice for this biproduct.

Discussion

Form these experiments it is clear that S. cerevisiae and Y. lipolytica have very different strengths when it comes to substrate utilisation. S. cerevisiae is better at catabolizing simple sugars while Y. lipolytica have its strengths in degrading lipids and deviates from this. A lot of the sugar based byproducts like molasses are still suitable for consumption and a production based on these will compete with our increasing demands for food. The lipid based wastes like glycerol and oil sediments are not suitable for either human or animal consumption. This makes Y. lipolytica a better chassis organism for biological production based on waste. With this said we will face a lot of new problems from switching to productions based on especially oil based substrates. Amongst others the cleaning of the fermentation tanks can be difficult. This was pointed out at our meeting with Novozymes and can be read in the resume.

References

  1. Barth, G. and Gaillardin, C. (1997), Physiology and genetics of the dimorphic fungus Yarrowia lipolytica. FEMS Microbiology Reviews, 19: 219–237. doi:10.1111/j.1574-6976.1997.tb00299.x
  2. María Domínguez, Jonathan D. Wasserman, Matthew Freeman, Multiple functions of the EGF receptor in Drosophila eye development, Current Biology, Volume 8, Issue 19, 24 September 1998, Pages 1039-1048, ISSN 0960-9822, http://dx.doi.org/10.1016/S0960-9822(98)70441-5.
  3. E. V. Shusta, R. T. Raines(1998). ncreasing the secretory capacity of Saccharomyces cerevisiae for production of single-chain antibody fragments. http://www.nature.com/nbt/journal/v16/n8/pdf/nbt0898-773.pdf
  4. Barth, G. (2013). Yarrowia lipolytica Genetics, Genomics, and Physiology. http://www.springer.com/us/book/9783642383199
  5. Mhairi Workman, Philippe Holt (2013). Comparing cellular performance of Yarrowia lipolytica during growth on glucose and glycerol in submerged cultivations
  6. H. Shafaghat, G.D. Najafpour. Growth Kinetics and Ethanol Productivity of Saccharomyces cerevisiae PTCC 24860 on Varius Carbon Sources. ISSN 1818-4952
  7. Jansen, M. L. A., Daran-Lapujade, P., de Winde, J. H., Piper, M. D. W., & Pronk, J. T. (2004). Prolonged Maltose-Limited Cultivation of Saccharomyces cerevisiae Selects for Cells with Improved Maltose Affinity and Hypersensitivity. Applied and Environmental Microbiology, 70(4), 1956–1963. http://doi.org/10.1128/AEM.70.4.1956-1963.2004
  8. Wisselink, H. W., Toirkens, M. J., del Rosario Franco Berriel, M., Winkler, A. A., van Dijken, J. P., Pronk, J. T., & van Maris, A. J. A. (2007). Engineering of Saccharomyces cerevisiae for Efficient Anaerobic Alcoholic Fermentation of l-Arabinose . Applied and Environmental Microbiology, 73(15), 4881–4891. http://doi.org/10.1128/AEM.00177-07
  9. Syed Shams Yazdani, Ramon Gonzalez, Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry, Current Opinion in Biotechnology, Volume 18, Issue 3, June 2007, Pages 213-219, ISSN 0958-1669, http://dx.doi.org/10.1016/j.copbio.2007.05.002.

  • FIND US AT:
Facebook Twitter
  • DTU BIOBUILDERS
  • DENMARK
  • DTU - SØLTOFTS PLADS, BYGN. 221/002
  • 2800 KGS. LYNGBY

  • E-mail:
  • dtu-biobuilders-2016@googlegroups.com
  • MAIN SPONSORS:
Lundbeck fundation DTU blue dot Lundbeck fundation Lundbeck fundation