Difference between revisions of "Team:Waterloo"

Line 130: Line 130:
  
 
   </div>
 
   </div>
 +
<br>
 +
<br>
 +
 +
<div style="background: rgba(64,72,85, 0.4)">
 +
  <div class="pan-text"><span style="background-color: #404855; color: #F6536D">ABSTRACT</span> </div>
 +
 +
 +
<h3 style="text-shadow: 2px 2px #999999;"> 
 +
Prions, or “zombie proteins,” are infectious agents that lead to a variety of neurodegenerative disorders (NDDs). They sicken cells by aggregating with each other and prevent proper protein folding leading to cell death from the accumulated damage. We propose a synthetic biology approach to better study prion propagation in the model organism S. cerevisiae. Our system involves inserting a premature stop codon into a protein open reading frame of interest or into dCas9 to respectively overexpress or knock-down protein levels during a [PSI+] response. We use Hsp104, a chaperone protein in S. cerevisiae, to demonstrate that our set-up phenotypically responds to the stop codon readthrough. This research is useful for continuously observing a phenotypic output during prion propagation in yeast and may have implications for helping to identify protein targets for both prevention and treatment of NDDs in the future.
 +
</h3>
 +
 +
 +
</div>
 +
  
 
<script>
 
<script>

Revision as of 23:23, 19 October 2016

OFF to priON


Using stop codon read-through and CRISPR to explore S. cerevisiae prion mechanisms


Furthering the advancement of research into prions and neurodegenerative diseases

We initiate a [PSI+] response in S. cerevisiae using a plasmid that will overexpress Sup35-NM.

We insert a premature stop codon into an N-terminal CFP tag that will be read through and fluoresce during a [PSI+] response

We control read through rates by choosing the location of the premature stop codon, and can therefore control protein production in [PSI+]. We use Hsp104, a chaperone protein in S. cerevisiae, to demonstrate that our set-up phenotypically responds to the stop codon readthrough.



ABSTRACT

Prions, or “zombie proteins,” are infectious agents that lead to a variety of neurodegenerative disorders (NDDs). They sicken cells by aggregating with each other and prevent proper protein folding leading to cell death from the accumulated damage. We propose a synthetic biology approach to better study prion propagation in the model organism S. cerevisiae. Our system involves inserting a premature stop codon into a protein open reading frame of interest or into dCas9 to respectively overexpress or knock-down protein levels during a [PSI+] response. We use Hsp104, a chaperone protein in S. cerevisiae, to demonstrate that our set-up phenotypically responds to the stop codon readthrough. This research is useful for continuously observing a phenotypic output during prion propagation in yeast and may have implications for helping to identify protein targets for both prevention and treatment of NDDs in the future.