Difference between revisions of "Team:Waterloo"

 
(40 intermediate revisions by 3 users not shown)
Line 10: Line 10:
 
     <div class="row">
 
     <div class="row">
 
        
 
        
     <div class="col-xs-2 changingcircles">
+
     <div class="col-md-2 changingcircles hidden-sm hidden-xs ">
 
       <div id="circle1" class="swapper1"></div><br>
 
       <div id="circle1" class="swapper1"></div><br>
 
       <div id="circle3" class="swapper3"></div><br>  
 
       <div id="circle3" class="swapper3"></div><br>  
Line 18: Line 18:
 
       <div id="circle2" class="swapper2"></div><br>
 
       <div id="circle2" class="swapper2"></div><br>
 
     </div>
 
     </div>
     <div class="col-xs-8" style="justify-align: center">
+
     <div class="col-md-8 col-sm-12" style="display:flex; flex-flow: column;justify-content: center">
 
       <div class="project-logo" >
 
       <div class="project-logo" >
 
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
Line 87: Line 87:
 
</svg>
 
</svg>
 
</div>
 
</div>
 
+
<div style="text-align: center;">
 
+
 
      <h2 id="caption">OFF to pri<span class="swapper0">ON</span></h2><br>
+
<h2 id="caption">OFF to pri<span class="swapper0">ON</span></h2><br>
 +
<h4 id="title">Using stop codon read-through and CRISPR to explore <i>S. cerevisiae</i> prion mechanisms </h1>
 +
   
 +
</div>
 
        
 
        
 
</div>
 
</div>
  
  
     <div class="col-xs-2 changing-circles">       
+
     <div class="col-xs-2 changing-circles hidden-sm hidden-xs ">       
 
       <div id="circle4" class="swapper2"></div><br>
 
       <div id="circle4" class="swapper2"></div><br>
 
       <div id="circle5" class="swapper3"></div><br>
 
       <div id="circle5" class="swapper3"></div><br>
Line 102: Line 105:
 
       <div id="circle6" class="swapper1"></div><br>
 
       <div id="circle6" class="swapper1"></div><br>
 
     </div>
 
     </div>
<div class="col-xs-12" style="justify-align: center">< <h4 id="title">Using stop codon read-through and CRISPR to explore <i>S. cerevisiae</i> prion mechanisms </h1>
+
 
</div>
+
 
</div>
 
</div>
 
</div>
 
</div>
 
</div>
 
</div>
  
 +
<br>
  
 
<div class="yeastpan">
 
<div class="yeastpan">
 
   <div class="overlay"></div>
 
   <div class="overlay"></div>
   <h3 class="pan-text"> <span class="pan-background"> Our research may have implications on advancing the understanding of neurodegenerative disease
+
   <h3 class="pan-text"> <span class="pan-background">Furthering the advancement of research into prions and neurodegenerative diseases
 
+
 
</span></h3>
 
</span></h3>
 
</div>
 
</div>
  <div class="container-fluid tsc">
 
  
     <div><img src="https://static.igem.org/mediawiki/2016/c/c8/T--Waterloo--trigger.svg" > </div>
+
 
     <div><img src="https://static.igem.org/mediawiki/2016/8/86/T--Waterloo--signal.svg" > </div>
+
  <div class="container-fluid tsc">
     <div><img src="https://static.igem.org/mediawiki/2016/e/e8/T--Waterloo--control.svg" > </div>
+
     <div class="row">
 +
    <div class="col-md-4 center"><img class="tsc1" style="width: 15vw" src="https://static.igem.org/mediawiki/2016/0/01/T--Waterloo--Trigger_landing.png" >
 +
<h4 id="texticles1"> We initiate a [PSI+] response in S. cerevisiae using a plasmid that will overexpress Sup35-NM. </h4></div>
 +
     <div class="col-md-4 center"><img class="tsc2" style="width: 15vw"  src="https://static.igem.org/mediawiki/2016/e/e0/T--Waterloo--Signal_landing.png">
 +
<h4 id="texticles2"> We insert a premature stop codon into an N-terminal CFP tag that will be read through and fluoresce during a [PSI+] response</h4></div>
 +
     <div class="col-md-4 center"><img class="tsc3" style="width: 15vw"  src="https://static.igem.org/mediawiki/2016/f/fe/T--Waterloo--Control_landing.png" >
 +
<h4 id="texticles3">We control read through rates by choosing the location of the premature stop codon, and can therefore control protein production in [PSI+]. We use Hsp104, a chaperone protein in S. cerevisiae, to demonstrate that our set-up phenotypically responds to the stop codon readthrough. </h4> </div>
 +
    </div>
  
 
   </div>
 
   </div>
 +
<div style="background: rgba(30,144,255, 0.4)">
 +
  <div class="pan-text"><span style="color: #F6536D">ABSTRACT</span> </div>
 +
 +
 +
<h3 style="text-shadow: 2px 2px #999999; padding:0vw 10vw 10vh 10vw"> 
 +
Prions, or “zombie proteins,” are infectious agents that lead to a variety of neurodegenerative disorders (NDDs). They sicken cells by aggregating with each other and prevent proper protein folding leading to cell death from the accumulated damage. We propose a synthetic biology approach to better study prion propagation in the model organism S. cerevisiae. Our system involves inserting a premature stop codon into a protein open reading frame of interest or into dCas9 to respectively overexpress or knock-down protein levels during a [PSI+] response. We use Hsp104, a chaperone protein in S. cerevisiae, to demonstrate that our set-up phenotypically responds to the stop codon readthrough. This research is useful for continuously observing a phenotypic output during prion propagation in yeast and may have implications for helping to identify protein targets for both prevention and treatment of NDDs in the future.
 +
</h3>
 +
 +
 +
</div>
 +
 +
 
<script>
 
<script>
 
   $(document).ready(function(){
 
   $(document).ready(function(){
 
 
 
         function toprion(){
 
         function toprion(){
 
       $(".swapper1")
 
       $(".swapper1")
Line 148: Line 167:
 
     toprion2();
 
     toprion2();
 
     toprion();
 
     toprion();
             
+
 
 +
    $("#texticles1").hide()
 +
    $("#texticles2").hide()
 +
    $("#texticles3").hide()
 +
    $(".tsc1").on("click", function(){
 +
      $("#texticles1").slideToggle()
 +
    }) 
 +
      $(".tsc2").on("click", function(){
 +
      $("#texticles2").slideToggle()
 +
    }) 
 +
    $(".tsc3").on("click", function(){
 +
      $("#texticles3").slideToggle()
 +
    })
 
   })
 
   })
 
</script>
 
</script>

Latest revision as of 23:59, 19 October 2016

OFF to priON


Using stop codon read-through and CRISPR to explore S. cerevisiae prion mechanisms


Furthering the advancement of research into prions and neurodegenerative diseases

We initiate a [PSI+] response in S. cerevisiae using a plasmid that will overexpress Sup35-NM.

We insert a premature stop codon into an N-terminal CFP tag that will be read through and fluoresce during a [PSI+] response

We control read through rates by choosing the location of the premature stop codon, and can therefore control protein production in [PSI+]. We use Hsp104, a chaperone protein in S. cerevisiae, to demonstrate that our set-up phenotypically responds to the stop codon readthrough.

ABSTRACT

Prions, or “zombie proteins,” are infectious agents that lead to a variety of neurodegenerative disorders (NDDs). They sicken cells by aggregating with each other and prevent proper protein folding leading to cell death from the accumulated damage. We propose a synthetic biology approach to better study prion propagation in the model organism S. cerevisiae. Our system involves inserting a premature stop codon into a protein open reading frame of interest or into dCas9 to respectively overexpress or knock-down protein levels during a [PSI+] response. We use Hsp104, a chaperone protein in S. cerevisiae, to demonstrate that our set-up phenotypically responds to the stop codon readthrough. This research is useful for continuously observing a phenotypic output during prion propagation in yeast and may have implications for helping to identify protein targets for both prevention and treatment of NDDs in the future.