Difference between revisions of "Team:Tokyo Tech/Model"

 
(34 intermediate revisions by 2 users not shown)
Line 139: Line 139:
 
<h3 class="link"><a href="#promoters"><font size="2.7">&nbsp;&nbsp;&nbsp;3-3. Promoters</font></a></h3>
 
<h3 class="link"><a href="#promoters"><font size="2.7">&nbsp;&nbsp;&nbsp;3-3. Promoters</font></a></h3>
 
<h3 class="link"><a href="#more"><font size="2.7">&nbsp;&nbsp;&nbsp;3-4. More realistic model with mRNA</font></a></h3>
 
<h3 class="link"><a href="#more"><font size="2.7">&nbsp;&nbsp;&nbsp;3-4. More realistic model with mRNA</font></a></h3>
<h3 class="link"><a href="#analysis">4. Sensitivity analysis</a></h3>
+
<h3 class="link"><a href="#analysis">4. Analysis</a></h3>
<h3 class="link"><a href="#requirements"><font size="2.7">&nbsp;&nbsp;&nbsp;4-1. Requirements</font></a></h3>
+
<h3 class="link"><a href="#prince_coli"><font size="2.7">&nbsp;&nbsp;&nbsp;4-1. The Prince <span style ="font-style : italic">coli</span> should be put in during the process</font></a></h3>
<h3 class="link"><a href="#prince_coli"><font size="2.7">&nbsp;&nbsp;&nbsp;4-2. The Prince <span style ="font-style : italic">coli</span> should be put in during the process</font></a></h3>
+
<h3 class="link"><a href="#prhl"><font size="2.7">&nbsp;&nbsp;&nbsp;4-2. Prhl should be changed</font></a></h3>
<h3 class="link"><a href="#prhl"><font size="2.7">&nbsp;&nbsp;&nbsp;4-3. Prhl should be changed</font></a></h3>
+
<h3 class="link"><a href="#requirements"><font size="2.7">&nbsp;&nbsp;&nbsp;4-3. Requirements</font></a></h3>
 
<h3 class="link"><a href="#production_ahl"><font size="2.7">&nbsp;&nbsp;&nbsp;4-4. Production rate of C4HSL and 3OC12HSL by RhlI and LasI</font></a></h3>
 
<h3 class="link"><a href="#production_ahl"><font size="2.7">&nbsp;&nbsp;&nbsp;4-4. Production rate of C4HSL and 3OC12HSL by RhlI and LasI</font></a></h3>
 
<h3 class="link"><a href="#translation"><font size="2.7">&nbsp;&nbsp;&nbsp;4-5. Translation rate of protein</font></a></h3>
 
<h3 class="link"><a href="#translation"><font size="2.7">&nbsp;&nbsp;&nbsp;4-5. Translation rate of protein</font></a></h3>
Line 162: Line 162:
 
</div><!-- /overview_header -->
 
</div><!-- /overview_header -->
 
<div id="overview_contents" class="container_contents">
 
<div id="overview_contents" class="container_contents">
<p class="normal_text">To reproduce the story of ”Snow White”, we have designed the cell-cell communication system with improved or characterized parts and collected data from comprehensive experiments. Furthermore, we constructed the mathematical model to simulate the behavior of the whole system and to confirm the feasibility of our story. This simulation successfully contributed to give the suggestions to wet lab experiments. In addition, in order to utilize TA (Toxin-Antitoxin) system, we developed a new software in Java for adjusting the number of ACA sequences, which MazF dimer recognizes and cleaves in mRNAs.</p>
+
<p class="normal_text">To recreate the story of ”the Snow White”, we have designed a cell-cell communication system with improved or characterized parts and collected data from comprehensive experiments. Furthermore, we constructed <a href="https://2016.igem.org/Team:Tokyo_Tech/Modeling_Details">the mathematical model</a> to simulate the behavior of the whole system and to confirm the feasibility of our story. This simulation successfully contributed to give <a href="https://2016.igem.org/Team:Tokyo_Tech/Model#prince_coli">the suggestions</a> to wet lab experiments. In addition, in order to help us utilize our Toxin-Antitoxin (TA) system, we developed a new software in Java for adjusting the number of ACA sequences, which MazF dimer recognizes and cleaves in mRNAs.</p>
 
</div><!-- /overview_contents -->
 
</div><!-- /overview_contents -->
 
</div><!-- /overview -->
 
</div><!-- /overview -->
Line 176: Line 176:
 
</div><!-- /_header -->
 
</div><!-- /_header -->
 
<p class="normal_text">In order to simulate our gene circuits, we developed an ordinary differential equation model.</p>
 
<p class="normal_text">In order to simulate our gene circuits, we developed an ordinary differential equation model.</p>
<p style="text-align:center;" class="normal_text">[<a href="https://2016.igem.org/Team:Tokyo_Tech/Modeling_Details">Detail Description for Modeling</a>]</p>
+
<p style="text-align:center;" class="normal_text">[<a href="https://2016.igem.org/Team:Tokyo_Tech/Modeling_Details">Model development</a>]</p>
  
<div id="modeling_detail" class="off showHideWrapper">
 
<div class="gradation_cover"><a href="javascript:void(0);" class="show"><img src="https://static.igem.org/mediawiki/2016/5/54/T--Tokyo_Tech--readmore.png" /></a></div>
 
<div id="modeling_detail_wrapper">
 
<div id="modeling_detail_expressions">
 
<h2>Differencial Equations</h2>
 
<h3>Snow White</h3>
 
\begin{equation}
 
\frac{d[mRNA_{RFP}]}{dt} = k - d[mRNA_{RFP}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{RFP}}})[mRNA_{RFP}][DiMazF]
 
\end{equation}
 
\begin{equation}
 
\frac{d[mRNA_{RhlI}]}{dt} =  leak_{P_{lux}} + \frac{\kappa_{Lux}[C12]^{n_{Lux}}}{K_{mLux}^{n_{Lux}} + [C12]^{n_{Lux}}} - d[mRNA_{RhlI}] - F_{DiMazF}f[mRNA_{RhlI}][DiMazF]
 
\end{equation}
 
\begin{equation}
 
\frac{d[RFP]}{dt} = \alpha [mRNA_{RFP}] - d_{RFP}[RFP]
 
\end{equation}
 
\begin{equation}
 
\frac{d[RhlI]}{dt} = \alpha [mRNA_{RhlI}] - d_{RhlI}[RhlI]
 
\end{equation}
 
\begin{equation}
 
\frac{d[C4]}{dt} = p_{C4}[RhlI]P_{Snow White} - d_{C4}[C4]
 
\end{equation}
 
\begin{equation}
 
\frac{d[mRNA_{MazF}]}{dt} =  leak_{P_{lux}} + \frac{\kappa_{Lux}[C12]^{n_{Lux}}}{K_{mLux}^{n_{Lux}}+ [C12]^{n_{Lux}}} \\
 
       - d[mRNA_{MazF}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazF}}})[mRNA_{MazF}][DiMazF]
 
\end{equation}
 
\begin{equation}
 
\frac{d[mRNA_{MazE}]}{dt} = k - d[mRNA_{MazE}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazE}}})[mRNA_{MazE}][DiMazF]
 
\end{equation}
 
\begin{equation}
 
\frac{d[MazF]}{dt} = \alpha [mRNA_{MazF}] - 2k_{Di_{MazF}}[MazF] + 2k_{-Di_{MazF}}[DiMazF] - d_{MazF}[MazF]
 
\end{equation}
 
\begin{equation}
 
\frac{d[DiMazF]}{dt} = k_{Di_{MazF}}[MazF] - k_{-Di_{MazF}}[DiMazF] - 2k_{Hexa}[DiMazE][DiMazF]^2 \\
 
       + 2k_{-Hexa}[MazHexamer] - d_{DiMazF}[DiMazF] \end{equation}
 
\begin{equation}
 
\frac{d[MazE]}{dt} = \alpha [mRNA_{MazE}] - 2k_{Di_{MazE}}[MazE] + 2k_{-Di_{MazE}}[DiMazE] - d_{MazE}[MazE]
 
\end{equation}
 
\begin{equation}
 
\frac{d[DiMazE]}{dt} = k_{Di_{MazE}}[MazE] - k_{-Di_{MazE}}[DiMazE] - k_{Hexa}[DiMazE][DiMazF]^2 \\
 
       + k_{-Hexa}[MazHexamer] - d_{DiMazE}[DiMazE]
 
\end{equation}
 
\begin{equation}
 
\frac{d[MazHexa]}{dt} = k_{Hexa}[DiMazE][DiMazF]^2 - k_{-Hexa}[MazHexa] - d_{Hexa}[MazHexa]
 
\end{equation}
 
\begin{equation}
 
\frac{dP_{Snow White}}{dt} = g \frac{E_{DiMazF}}{E_{DiMazF}+[DiMazF]}\left(1- \frac{P_{Snow White}+P_{Queen}+P_{Prince}}{P_{max}} \right) P_{Snow White}
 
\end{equation}
 
  
 +
<!-- 折り畳み展開ポインタ -->
 +
<div onclick="obj=document.getElementById('open1').style; obj.display=(obj.display=='none')?'block':'none';">
 +
<a style="cursor:pointer;">▼ Differential equations</a>
 +
</div>
 +
<!--// 折り畳み展開ポインタ -->
 +
<!-- 折り畳まれ部分 -->
 +
<div id="open1" style="display:none;clear:both;">
 +
<h3>Snow White</h3>
 +
\begin{equation}
 +
\frac{d[mRNA_{RFP}]}{dt} = k - d[mRNA_{RFP}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{RFP}}})[mRNA_{RFP}][DiMazF]
 +
\end{equation}
 +
\begin{equation}
 +
\frac{d[mRNA_{RhlI}]}{dt} =  leak_{P_{lux}} + \frac{\kappa_{Lux}[C12]^{n_{Lux}}}{K_{mLux}^{n_{Lux}} + [C12]^{n_{Lux}}} - d[mRNA_{RhlI}] - F_{DiMazF}f[mRNA_{RhlI}][DiMazF]
 +
\end{equation}
 +
\begin{equation}
 +
\frac{d[RFP]}{dt} = \alpha [mRNA_{RFP}] - d_{RFP}[RFP]
 +
\end{equation}
 +
\begin{equation}
 +
\frac{d[RhlI]}{dt} = \alpha [mRNA_{RhlI}] - d_{RhlI}[RhlI]
 +
\end{equation}
 +
\begin{equation}
 +
\frac{d[C4]}{dt} = p_{C4}[RhlI]P_{Snow White} - d_{C4}[C4]
 +
\end{equation}
 +
\begin{eqnarray}
 +
\frac{d[mRNA_{MazF}]}{dt} &=&leak_{P_{lux}} + \frac{\kappa_{Lux}[C12]^{n_{Lux}}}{K_{mLux}^{n_{Lux}}+ [C12]^{n_{Lux}}} - d[mRNA_{MazF}]  \nonumber \\
 +
&&    \ \ \ \ \ \ \ \ \ \ \ \ -F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazF}}})[mRNA_{MazF}][DiMazF]
 +
\end{eqnarray}
 +
\begin{equation}
 +
\frac{d[mRNA_{MazE}]}{dt} = k - d[mRNA_{MazE}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazE}}})[mRNA_{MazE}][DiMazF]
 +
\end{equation}
 +
\begin{equation}
 +
\frac{d[MazF]}{dt} = \alpha [mRNA_{MazF}] - 2k_{Di_{MazF}}[MazF] + 2k_{-Di_{MazF}}[DiMazF] - d_{MazF}[MazF]
 +
\end{equation}
 +
\begin{eqnarray}
 +
\frac{d[DiMazF]}{dt} &=& k_{Di_{MazF}}[MazF] - k_{-Di_{MazF}}[DiMazF] - 2k_{Hexa}[DiMazE][DiMazF]^2 \nonumber \\
 +
&& \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +2k_{-Hexa}[MazHexamer] - d_{DiMazF}[DiMazF]
 +
\end{eqnarray}
 +
\begin{equation}
 +
\frac{d[MazE]}{dt} = \alpha [mRNA_{MazE}] - 2k_{Di_{MazE}}[MazE] + 2k_{-Di_{MazE}}[DiMazE] - d_{MazE}[MazE]
 +
\end{equation}
 +
\begin{eqnarray}
 +
\frac{d[DiMazE]}{dt} &=& k_{Di_{MazE}}[MazE] - k_{-Di_{MazE}}[DiMazE] - k_{Hexa}[DiMazE][DiMazF]^2 \nonumber \\
 +
&&  \ \ \ \ \ \ \ \ \ + k_{-Hexa}[MazHexamer] - d_{DiMazE}[DiMazE]
 +
\end{eqnarray}
 +
\begin{equation}
 +
\frac{d[MazHexa]}{dt} = k_{Hexa}[DiMazE][DiMazF]^2 - k_{-Hexa}[MazHexa] - d_{Hexa}[MazHexa]
 +
\end{equation}
 +
\begin{equation}
 +
\frac{dP_{Snow White}}{dt} = g \frac{E_{DiMazF}}{E_{DiMazF}+[DiMazF]}\left(1- \frac{P_{Snow White}+P_{Queen}+P_{Prince}}{P_{max}} \right) P_{Snow White}
 +
\end{equation}
 
<h3>Queen</h3>
 
<h3>Queen</h3>
\begin{equation}
+
\begin{equation}
\frac{d[mRNA_{GFP}]}{dt} = k - d[mRNA_{GFP}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{GFP}}})[mRNA_{GFP}][DiMazF]
+
\frac{d[mRNA_{GFP}]}{dt} = k - d[mRNA_{GFP}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{GFP}}})[mRNA_{GFP}][DiMazF]
\end{equation}
+
\end{equation}
\begin{equation}
+
\begin{eqnarray}
\frac{d[mRNA_{LasI}]}{dt} =  leak_{P_{rhl}} + \frac{\kappa_{Rhl}[C4]^{n_{Rhl}}}{K_{mRhl}^{n_{Rhl}} + [C4]^{n_{Rhl}}} \\
+
\frac{d[mRNA_{LasI}]}{dt} &=& leak_{P_{rhl}} + \frac{\kappa_{Rhl}[C4]^{n_{Rhl}}}{K_{mRhl}^{n_{Rhl}} + [C4]^{n_{Rhl}}} \nonumber \\
       - d[mRNA_{LasI}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{LasI}}})[mRNA_{LasI}][DiMazF]
+
&& \ \ \ \ - d[mRNA_{LasI}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{LasI}}})[mRNA_{LasI}][DiMazF]
\end{equation}
+
\end{eqnarray}
\begin{equation}
+
\begin{equation}
\frac{d[GFP]}{dt} = \alpha [mRNA_{GFP}] - d_{GFP}[GFP]
+
\frac{d[GFP]}{dt} = \alpha [mRNA_{GFP}] - d_{GFP}[GFP]
\end{equation}
+
\end{equation}
\begin{equation}
+
\begin{equation}
\frac{d[LasI]}{dt} = \alpha [mRNA_{LasI}] - d_{LasI}[LasI]
+
\frac{d[LasI]}{dt} = \alpha [mRNA_{LasI}] - d_{LasI}[LasI]
\end{equation}
+
\end{equation}
\begin{equation}
+
\begin{equation}
\frac{d[C12]}{dt} = p_{C12}[LasI]P_{Queen} - d_{C12}[C12] - D[C12][AmiE]
+
\frac{d[C12]}{dt} = p_{C12}[LasI]P_{Queen} - d_{C12}[C12] - D[C12][AmiE]
\end{equation}
+
\end{equation}
\begin{equation}
+
\begin{eqnarray}
\frac{d[mRNA_{MazF}]}{dt} =  leak_{P_{lux}} + \frac{\kappa_{Rhl}[C4]^{n_{Rhl}}}{K_{mRhl}^{n_{Rhl}} + [C4]^{n_{Rhl}}} \\
+
\frac{d[mRNA_{MazF}]}{dt} &=& leak_{P_{lux}} + \frac{\kappa_{Rhl}[C4]^{n_{Rhl}}}{K_{mRhl}^{n_{Rhl}} + [C4]^{n_{Rhl}}} \nonumber \\
       - d[mRNA_{MazF}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazF}}})[mRNA_{MazF}][DiMazF]
+
&& - d[mRNA_{MazF}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazF}}})[mRNA_{MazF}][DiMazF]
\end{equation}
+
\end{eqnarray}
\begin{equation}
+
\begin{equation}
\frac{d[mRNA_{MazE}]}{dt} = k - d[mRNA_{MazE}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazE}}})[mRNA_{MazE}][DiMazF]
+
\frac{d[mRNA_{MazE}]}{dt} = k - d[mRNA_{MazE}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazE}}})[mRNA_{MazE}][DiMazF]
\end{equation}
+
\end{equation}
\begin{equation}
+
\begin{equation}
\frac{d[MazF]}{dt} = \alpha [mRNA_{MazF}] - 2k_{Di_{MazF}}[MazF] + 2k_{-Di_{MazF}}[DiMazF] - d_{MazF}[MazF]
+
\frac{d[MazF]}{dt} = \alpha [mRNA_{MazF}] - 2k_{Di_{MazF}}[MazF] + 2k_{-Di_{MazF}}[DiMazF] - d_{MazF}[MazF]
\end{equation}
+
\end{equation}
\begin{equation}
+
\begin{eqnarray}
\frac{d[DiMazF]}{dt} = k_{Di_{MazF}}[MazF] - k_{-Di_{MazF}}[DiMazF] - 2k_{Hexa}[DiMazE][DiMazF]^2 \\
+
\frac{d[DiMazF]}{dt} &=& k_{Di_{MazF}}[MazF] - k_{-Di_{MazF}}[DiMazF] - 2k_{Hexa}[DiMazE][DiMazF]^2 \nonumber \\
       + 2k_{-Hexa}[MazHexamer] - d_{DiMazF}[DiMazF]
+
&& + 2k_{-Hexa}[MazHexamer] - d_{DiMazF}[DiMazF]
\end{equation}
+
\end{eqnarray}
\begin{equation}
+
\begin{equation}
\frac{d[MazE]}{dt} = \alpha [mRNA_{MazE}] - 2k_{Di_{MazE}}[MazE] + 2k_{-Di_{MazE}}[DiMazE] - d_{MazE}[MazE]
+
\frac{d[MazE]}{dt} = \alpha [mRNA_{MazE}] - 2k_{Di_{MazE}}[MazE] + 2k_{-Di_{MazE}}[DiMazE] - d_{MazE}[MazE]
\end{equation}
+
\end{equation}
\begin{equation}
+
\begin{eqnarray}
\frac{d[DiMazE]}{dt} = k_{Di_{MazE}}[MazE] - k_{-Di_{MazE}}[DiMazE] - k_{Hexa}[DiMazE][DiMazF]^2 \\
+
\frac{d[DiMazE]}{dt} &=& k_{Di_{MazE}}[MazE] - k_{-Di_{MazE}}[DiMazE] - k_{Hexa}[DiMazE][DiMazF]^2 \nonumber \\
       + k_{-Hexa}[MazHexamer] - d_{DiMazE}[DiMazE]
+
&& + k_{-Hexa}[MazHexamer] - d_{DiMazE}[DiMazE]
\end{equation}
+
\end{eqnarray}
\begin{equation}
+
\begin{equation}
\frac{d[MazHexa]}{dt} = k_{Hexa}[DiMazE][DiMazF]^2 - k_{-Hexa}[MazHexa] - d_{Hexa}[MazHexa]
+
\frac{d[MazHexa]}{dt} = k_{Hexa}[DiMazE][DiMazF]^2 - k_{-Hexa}[MazHexa] - d_{Hexa}[MazHexa]
\end{equation}
+
\end{equation}
\begin{equation}
+
\begin{equation}
\frac{dP_{Queen}}{dt} = g \frac{E_{DiMazF}}{E_{DiMazF}+[DiMazF]}\left(1- \frac{P_{Snow White}+P_{Queen}+P_{Prince}}{P_{max}}\right) P_{Queen}\\
+
\frac{dP_{Queen}}{dt} = g \frac{E_{DiMazF}}{E_{DiMazF}+[DiMazF]}\left(1- \frac{P_{Snow White}+P_{Queen}+P_{Prince}}{P_{max}}\right) P_{Queen}\\
\end{equation}
+
\end{equation}
 
+
 
<h3>Prince</h3>
 
<h3>Prince</h3>
\begin{equation}
+
\begin{equation}
\frac{d[mRNA_{AmiE}]}{dt} = leak_{P_{lux}} + \frac{\kappa_{Lux}[C12]^n}{K_{mLux}^n + [C12]^n} - d[mRNA_{AmiE}]
+
\frac{d[mRNA_{AmiE}]}{dt} = leak_{P_{lux}} + \frac{\kappa_{Lux}[C12]^n}{K_{mLux}^n + [C12]^n} - d[mRNA_{AmiE}]
\end{equation}
+
\end{equation}
\begin{equation}
+
\begin{equation}
\frac{d[AmiE]}{dt} = \alpha [mRNA_{AmiE}]P_{Prince} - d_{AmiE}[AmiE]
+
\frac{d[AmiE]}{dt} = \alpha [mRNA_{AmiE}]P_{Prince} - d_{AmiE}[AmiE]
\end{equation}
+
\end{equation}
\begin{equation}
+
\begin{equation}
\frac{dP_{Prince}}{dt} = g\left(1- \frac{P_{Snow White}+P_{Queen}+P_{Prince}}{P_{max}}\right) P_{Prince}
+
\frac{dP_{Prince}}{dt} = g\left(1- \frac{P_{Snow White}+P_{Queen}+P_{Prince}}{P_{max}}\right) P_{Prince}
\end{equation}
+
\end{equation}
</div><!-- /modeling_detail_expressions -->
+
</div>
<div id="modeling_detail_parameter">
+
<!--// 折り畳まれ部分 -->
<h2>Explanation about Parameters</h2>
+
 
 +
<br>
 +
 
 +
<div onclick="obj=document.getElementById('open2').style; obj.display=(obj.display=='none')?'block':'none';">
 +
<a style="cursor:pointer;">▼Parameters</a>
 +
</div>
 +
<!--// 折り畳み展開ポインタ -->
 +
<!-- 折り畳まれ部分 -->
 +
<div id="open2" style="display:none;clear:both;">
 
<table border="1" style="margin: auto;">
 
<table border="1" style="margin: auto;">
 
<tbody>
 
<tbody>
 
<tr><td>Parameter </td><td> Description </td></tr>
 
<tr><td>Parameter </td><td> Description </td></tr>
<tr><td>$$g$$ </td><td> Growth rate of each cells</td></tr>
+
<tr><td>$$g$$ </td><td> Growth rate of each cells</td></tr>
<tr><td>$$P_{max}$$ </td><td> Carrying capacity </td></tr>
+
<tr><td>$$P_{max}$$ </td><td> Carrying capacity </td></tr>
<tr><td>$$E_{DiMazF}$$ </td><td> Effect of MazF dimer on growth rate</td></tr>
+
<tr><td>$$E_{DiMazF}$$ </td><td> Effect of MazF dimer on growth rate</td></tr>
<tr><td>$$k$$ </td><td> Transcription rate of mRNA under \(P_{tet}\) </td></tr>
+
<tr><td>$$k$$ </td><td> Transcription rate of mRNA under \(P_{tet}\) </td></tr>
<tr><td>$$leak_{P_{lux}}$$ </td><td> Leakage of \(P_{lux}\) </td></tr>
+
<tr><td>$$leak_{P_{lux}}$$ </td><td> Leakage of \(P_{lux}\) </td></tr>
<tr><td>$$leak_{P_{rhl}}$$ </td><td> Leakage of \(P_{rhl}\) </td></tr>
+
<tr><td>$$leak_{P_{rhl}}$$ </td><td> Leakage of \(P_{rhl}\) </td></tr>
<tr><td>$$\kappa_{Lux}$$ </td><td> Maximum transcription rate of mRNA under \(P_{lux}\)</td></tr>
+
<tr><td>$$\kappa_{Lux}$$ </td><td> Maximum transcription rate of mRNA under \(P_{lux}\)</td></tr>
<tr><td>$$\kappa_{Rhl}$$ </td><td> Maximum transcription rate of mRNA under \(P_{rhl}\) </td></tr>
+
<tr><td>$$\kappa_{Rhl}$$ </td><td> Maximum transcription rate of mRNA under \(P_{rhl}\) </td></tr>
<tr><td>$$n_{Lux}$$ </td><td> Hill coefficient for \(P_{lux}\)</td></tr>
+
<tr><td>$$n_{Lux}$$ </td><td> Hill coefficient for \(P_{lux}\)</td></tr>
<tr><td>$$n_{Rhl}$$ </td><td> Hill coefficient for \(P_{rhl}\)</td></tr>
+
<tr><td>$$n_{Rhl}$$ </td><td> Hill coefficient for \(P_{rhl}\)</td></tr>
<tr><td>$$K_{mLux}$$ </td><td> Lumped paremeter for the Lux System</td></tr>
+
<tr><td>$$K_{mLux}$$ </td><td> Lumped paremeter for the Lux System</td></tr>
<tr><td>$$K_{mRhl}$$ </td><td> Lumped paremeter for the Rhl System</td></tr>
+
<tr><td>$$K_{mRhl}$$ </td><td> Lumped paremeter for the Rhl System</td></tr>
<tr><td>$$F_{DiMazF}$$ </td><td> Cutting rate at ACA sequences on mRNA by MazF dimer</td></tr>
+
<tr><td>$$F_{DiMazF}$$ </td><td> Cutting rate at ACA sequences on mRNA by MazF dimer</td></tr>
<tr><td>$$f$$ </td><td> The probability of distinction of ACA sequencess in each mRNA</td></tr>
+
<tr><td>$$f$$ </td><td> The probability of distinction of ACA sequencess in each mRNA</td></tr>
<tr><td>$$f_{mRNA_{RFP}}$$ </td><td> The number of ACA sequences in \(mRNA_{RFP}\)</td></tr>
+
<tr><td>$$f_{mRNA_{RFP}}$$ </td><td> The number of ACA sequences in \(mRNA_{RFP}\)</td></tr>
<tr><td>$$f_{mRNA_{GFP}}$$ </td><td> The number of ACA sequences in \(mRNA_{GFP}\)</td></tr>
+
<tr><td>$$f_{mRNA_{GFP}}$$ </td><td> The number of ACA sequences in \(mRNA_{GFP}\)</td></tr>
<tr><td>$$f_{mRNA_{RhlI}}$$ </td><td> The number of ACA sequences in \(mRNA_{RhlI}\) </td></tr>
+
<tr><td>$$f_{mRNA_{RhlI}}$$ </td><td> The number of ACA sequences in \(mRNA_{RhlI}\) </td></tr>
<tr><td>$$f_{mRNA_{LasI}}$$ </td><td> The number of ACA sequences in \(mRNA_{LasI}\)</td></tr>
+
<tr><td>$$f_{mRNA_{LasI}}$$ </td><td> The number of ACA sequences in \(mRNA_{LasI}\)</td></tr>
<tr><td>$$f_{mRNA_{MazF}}$$ </td><td> The number of ACA sequences in \(mRNA_{MazF}\) </td></tr>
+
<tr><td>$$f_{mRNA_{MazF}}$$ </td><td> The number of ACA sequences in \(mRNA_{MazF}\) </td></tr>
<tr><td>$$f_{mRNA_{MazE}}$$ </td><td> The number of ACA sequences in \(mRNA_{MazE}\) </td></tr>
+
<tr><td>$$f_{mRNA_{MazE}}$$ </td><td> The number of ACA sequences in \(mRNA_{MazE}\) </td></tr>
<tr><td>$$\alpha$$ </td><td> Translation rate of Protein </td></tr>
+
<tr><td>$$\alpha$$ </td><td> Translation rate of Protein </td></tr>
<tr><td>$$k_{Di_{MazF}}$$ </td><td> Formation rate of MazF dimer </td></tr>
+
<tr><td>$$k_{Di_{MazF}}$$ </td><td> Formation rate of MazF dimer </td></tr>
 
+
<tr><td>$$k_{-Di_{MazF}}$$ </td><td> Dissociation rate of MazF dimer </td></tr>
<tr><td>$$k_{-Di_{MazF}}$$ </td><td> Dissociation rate of MazF dimer </td></tr>
+
<tr><td>$$k_{Di_{MazE}}$$ </td><td> Formation rate of MazE dimer </td></tr>
<tr><td>$$k_{Di_{MazE}}$$ </td><td> Formation rate of MazE dimer </td></tr>
+
<tr><td>$$k_{-Di_{MazE}}$$ </td><td> Dissociation rate of MazE dimer </td></tr>
<tr><td>$$k_{-Di_{MazE}}$$ </td><td> Dissociation rate of MazE dimer </td></tr>
+
<tr><td>$$k_{Hexa}$$ </td><td> Formation rate of Maz hexamer </td></tr>
<tr><td>$$k_{Hexa}$$ </td><td> Formation rate of Maz hexamer </td></tr>
+
<tr><td>$$k_{-Hexa}$$ </td><td> Dissociation rate of Maz hexamer</td></tr>
<tr><td>$$k_{-Hexa}$$ </td><td> Dissociation rate of Maz hexamer</td></tr>
+
<tr><td>$$p_{C4}$$ </td><td> Production rate of C4HSL by RhlI</td></tr>
<tr><td>$$p_{C4}$$ </td><td> Production rate of C4HSL by RhlI</td></tr>
+
<tr><td>$$p_{C12}$$ </td><td> Production rate of 3OC12HSL by LuxI </td></tr>
<tr><td>$$p_{C12}$$ </td><td> Production rate of 3OC12HSL by LuxI </td></tr>
+
<tr><td>$$D$$ </td><td> Decomposition rate of 3OC12HSL by AmiE </td></tr>
<tr><td>$$D$$ </td><td> Decomposition rate of 3OC12HSL by AmiE </td></tr>
+
<tr><td>$$d$$ </td><td> Degradation rate of mRNA </td></tr>
<tr><td>$$d$$ </td><td> Degradation rate of mRNA </td></tr>
+
<tr><td>$$d_{RFP}$$ </td><td> Degradation rate of RFP</td></tr>
<tr><td>$$d_{RFP}$$ </td><td> Degradation rate of RFP</td></tr>
+
<tr><td>$$d_{GFP}$$ </td><td> Degradation rate of GFP </td></tr>
<tr><td>$$d_{GFP}$$ </td><td> Degradation rate of GFP </td></tr>
+
<tr><td>$$d_{RhlI}$$ </td><td> Degradation rate of RhlI</td></tr>
<tr><td>$$d_{RhlI}$$ </td><td> Degradation rate of RhlI</td></tr>
+
<tr><td>$$d_{LasI}$$ </td><td> Degradation rate of LasI</td></tr>
<tr><td>$$d_{LasI}$$ </td><td> Degradation rate of LasI</td></tr>
+
<tr><td>$$d_{MazF}$$ </td><td> Degradation rate of MazF</td></tr>
<tr><td>$$d_{MazF}$$ </td><td> Degradation rate of MazF</td></tr>
+
<tr><td>$$d_{DiMazF}$$ </td><td> Degradation rate of MazF dimer</td></tr>
<tr><td>$$d_{DiMazF}$$ </td><td> Degradation rate of MazF dimer</td></tr>
+
<tr><td>$$d_{MazE}$$ </td><td> Degradation rate of MazE </td></tr>
<tr><td>$$d_{MazE}$$ </td><td> Degradation rate of MazE </td></tr>
+
<tr><td>$$d_{DiMazE}$$ </td><td> Degradation rate of MazE dimer </td></tr>
<tr><td>$$d_{DiMazE}$$ </td><td> Degradation rate of MazE dimer </td></tr>
+
<tr><td>$$d_{Hexa}$$ </td><td> Degradation rate of Maz Hexamer </td></tr>
<tr><td>$$d_{Hexa}$$ </td><td> Degradation rate of Maz Hexamer </td></tr>
+
<tr><td>$$d_{C4}$$ </td><td> Degradation rate of C4HSL </td></tr>
<tr><td>$$d_{C4}$$ </td><td> Degradation rate of C4HSL </td></tr>
+
<tr><td>$$d_{C12}$$ </td><td> Degradation rate of 3OC12HSL </td></tr>
<tr><td>$$d_{C12}$$ </td><td> Degradation rate of 3OC12HSL </td></tr>
+
<tr><td>$$d_{AmiE}$$ </td><td> Degradation rate of AmiE </td></tr>
<tr><td>$$d_{AmiE}$$ </td><td> Degradation rate of AmiE </td></tr>
+
 
+
 
</tbody>
 
</tbody>
 
</table>
 
</table>
</div><!-- /modeling_detail_parameter -->
+
</div>
</div><!-- /modeling_detail_wrapper -->
+
<!--// 折り畳まれ部分 -->
 
+
</div>
<div class="no_cover">
+
<a href="javascript:void(0);" class="hide"><img src="https://static.igem.org/mediawiki/2016/a/a7/T--Tokyo_Tech--Hide.png" /></a></div>
+
</div><!-- /modeling_detail -->
+
</div><!-- /story_simalation_contents -->
+
 
+
  
 
<div id="results_contents" class="container_contents">
 
<div id="results_contents" class="container_contents">
Line 348: Line 351:
 
<h3><span>2-2. Results</span></h3>
 
<h3><span>2-2. Results</span></h3>
 
</div><!-- /_header -->
 
</div><!-- /_header -->
<p class="normal_text">As a result, we obtained and confirmed the desirable behavior of the whole system by modifying and improving parts. As described below, our simulation showed appropriate transition of fluorescence for the story.</p>
+
<p class="normal_text">We obtained and confirmed the desirable behavior of the whole system by modifying and improving parts. As described below, our simulation showed an appropriate transition of concentration of RFP and GFP for the story.</p>
 
                 <div align="center"><img src="https://static.igem.org/mediawiki/2016/7/7f/T--Tokyo_Tech--2-1-1.png" height ="500"><br></div>
 
                 <div align="center"><img src="https://static.igem.org/mediawiki/2016/7/7f/T--Tokyo_Tech--2-1-1.png" height ="500"><br></div>
<div align="center"><p class="caption" style="font-size: 16px; text-align: center;"><span style="font-weight: bold;">Fig.5-2-2. Time-dependent change of the concentrations of fluorescence proteins</span></p></div>
+
<div align="center"><p class="caption" style="font-size: 16px; text-align: center;"><span style="font-weight: bold;">Fig.5-2.2. Time-dependent change of the concentrations of fluorescent proteins</span></p></div>
 +
 
 +
 
 +
<br>
 +
 
 +
    <div class="floating"><img src="https://static.igem.org/mediawiki/2016/7/79/T--Tokyo_Tech--4koma.png" width ="320"class="align_right"> </div>
 +
<p class="normal_text"> In the blue area of Fig.5-2-2, the concentration of fluorescent proteins start to increase. The concentration of RFP of Snow White <span style ="font-style : italic">coli</span> exceeds  that of GFP of the Queen <span style ="font-style : italic">coli</span>. <br>
 +
It is as if Snow White got fairer more and more.<br><br>
 +
 
 +
In the pink area of Fig.5-2-2, the concentration of C12 increase thanks to the appearance of C4. As a result, the MazF inside Snow White <span style ="font-style : italic">coli</span> and the Queen <span style ="font-style : italic">coli</span> start to suppress the increment of fluorescet proteins. <br>
 +
It is as if the Queen, influenced by the Mirror's answer, transforming into a Witch in order to give Snow White a poisoned apple.<br><br>
 +
 
 +
In the green area of Fig.5-2-2, the concentration of C12 more increases and the MazF inside Snow White <span style ="font-style : italic">coli</span> more suppress the increment of GFP. So the concentration GFP exceeds that of RFP. <br>
 +
It looks as if Snow White bit the apple, sinking into unconsciousness soon.<br><br>
  
    <div class="floating"><img src="https://static.igem.org/mediawiki/2016/6/6e/T-Tokyo_Tech--koma1.png" width ="300"class="align_right"> </div>
+
In the yellow area of Fig.5-2-2, the AmiE synthesized by the introduced Prince <span style ="font-style : italic">coli</span> decomposes C12 so the MazF inside Snow White <span style ="font-style : italic">coli</span> diminishes and the concentration of GFP resumes. <br>
<p class="normal_text">  In the blue area of Fig.5-2-2-1, the fluorescence intensity starts to increase. The fluorescence intensity of Snow White <span style ="font-style : italic">coli</span> exceeds that of that of the Queen <span style ="font-style : italic">coli</span>. <br>It is as if Snow White got fairer more and more. </p><br><br><br>
+
It looks as if the Prince lifted Snow White and she opened her eyes.</p>
  
<div class="floating"><img src="https://static.igem.org/mediawiki/2016/a/ad/T-Toyko_Tech--koma2.png" width ="300"class="align_right"> </div>
 
<p class="normal_text"> In the pink area of Fig.5-2-2-1, C12 is being synthesized thanks to the appearance of C4. And the concentration of C12 increases. As a result, the MazF inside Snow White <span style ="font-style : italic">coli</span> and the Queen <span style ="font-style : italic">coli</span>, suppressing the increment of fluorescent proteins. <br>It is as if the Mirror’s answer transformed the Queen into a Witch, so she can give Snow White a poisoned apple.</p>
 
  
<div class="floating"><img src="https://static.igem.org/mediawiki/2016/c/c0/T-Tokyo_Tech--koma3.png" width ="300"class="align_right"> </div>
 
<p class="normal_text"> In the green area of Fig.5-2-2-1, C12 increases and the MazF inside Snow White <span style ="font-style : italic">coli</span> induced by it increases even more. So the GFP exceeds the RFP. <br>It looks as if Snow White bit the apple, sinking into unconsciousness promptly.</p><br><br>
 
  
<div class="floating"><img src="https://static.igem.org/mediawiki/2016/0/08/T-Tokyo_Tech--koma4.png" width ="300"class="align_right"></div>
 
<p class="normal_text"> In the yellow area of Fig.5-2-2-1, the AmiE synthesized by the introduced the Prince <span style ="font-style : italic">coli</span> decomposes C12  so the MazF inside Snow White <span style ="font-style : italic">coli</span> diminishes and C4 increases. <br>It looks as if the Prince lifted Snow White and she opened her eyes.</p>
 
 
</div><!-- /results_contents -->
 
</div><!-- /results_contents -->
 
</div><!-- /results -->
 
</div><!-- /results -->
Line 378: Line 388:
 
</div><!-- /_header -->
 
</div><!-- /_header -->
 
<div id="population_contents">
 
<div id="population_contents">
<p class="normal_text">First, we tried to model the growth curve of the system. When the number of <span style ="font-style : italic">E. coli</span> approaches a certain value, the growth will stop. We defined the value in the culture as P<sub>max</sub>. Then the population growth equation for our system is described as follows:<br>
+
<p class="normal_text">First, we tried to model the growth curve of the system. When the number of <span style ="font-style : italic">E. coli</span> approaches a certain value, the growth will stop. We defined this value in the culture as P<sub>max</sub>. Then the population growth equation for our system is described as follows:<br>
 
$$ \frac{dP}{dt} = g\left(1 - \frac{P}{P_{max}}\right)P$$<br>
 
$$ \frac{dP}{dt} = g\left(1 - \frac{P}{P_{max}}\right)P$$<br>
 
where g is the population growth rate. <br>
 
where g is the population growth rate. <br>
Line 389: Line 399:
 
<div align="center"><p class="caption" style="font-size: 16px; text-align: center;"><span style="font-weight: bold;">Fig.5-3-1. Modeled growth curve of <span style ="font-style : italic">E. coli</span> fitted to experiment data</span> </div>
 
<div align="center"><p class="caption" style="font-size: 16px; text-align: center;"><span style="font-weight: bold;">Fig.5-3-1. Modeled growth curve of <span style ="font-style : italic">E. coli</span> fitted to experiment data</span> </div>
  
<p class="normal_text">We got the experimental data from <a href="https://2016.igem.org/Team:Tokyo_Tech/Toxin_Assay/mazEF_System_Assay">Toxin assay</a> for this fitting. We estimated the parameters</p>
+
<p class="normal_text">Using the experimental data from the <a href="https://2016.igem.org/Team:Tokyo_Tech/Toxin_Assay/mazEF_System_Assay">Toxin assay</a> for this fitting, we estimated the following parameters:
 
<p class="normal_text" style="text-align: center;">g = 0.0123<br>
 
<p class="normal_text" style="text-align: center;">g = 0.0123<br>
 
and<br>
 
and<br>
 
P<sub>max</sub> =3.3<br>
 
P<sub>max</sub> =3.3<br>
 
<p class="normal_text">respectively.<br>
 
<p class="normal_text">respectively.<br>
These parameters can be used for Snow White<span style ="font-style : italic">coli</span>, the Queen <span style ="font-style : italic">coli</span> and the Prince <span style ="font-style : italic">coli</span> in the same way.
+
These parameters can be used for Snow White <span style ="font-style : italic">coli</span>, the Queen <span style ="font-style : italic">coli</span> and the Prince <span style ="font-style : italic">coli</span> in the same way.
 
</p>
 
</p>
 
</div> <!-- population_contents-->
 
</div> <!-- population_contents-->
Line 404: Line 414:
 
</div><!-- /_header -->
 
</div><!-- /_header -->
 
<div id="toxin_contents">
 
<div id="toxin_contents">
<p class="normal_text">Since there are few researches actually discussed on the kinetics of the TA system, we estimated the parameters for our TA system. We got the experimental data from <a href="https://2016.igem.org/Team:Tokyo_Tech/Toxin_Assay/mazEF_System_Assay">Toxin assay</a> for this fitting. The differential equations representing the TA system are described as follows:
+
 
$$ \frac{d[MazF]}{dt} = \alpha [mRNA_{MazF}] - 2k_{Di_{MazF}}[MazF] + 2k_{-Di_{MazF}}[DiMazF] - d_{MazF}[MazF] $$<br>
+
<div onclick="obj=document.getElementById('open3').style; obj.display=(obj.display=='none')?'block':'none';">
$$ \frac{d[DiMazF]}{dt} = k_{Di_{MazF}}[MazF] - k_{-Di_{MazF}}[DiMazF] - 2k_{Hexa}[DiMazE][DiMazF]^2 \\
+
<a style="cursor:pointer;">▼Read more</a>
+ 2k_{-Hexa}[MazHexamer] - d_{DiMazF}[DiMazF] $$<br>
+
</div>
$$ \frac{d[MazE]}{dt} = \alpha [mRNA_{MazE}] - 2k_{Di_{MazE}}[MazE] + 2k_{-Di_{MazE}}[DiMazE] - d_{MazE}[MazE] $$<br>
+
<!--// 折り畳み展開ポインタ -->
$$ \frac{d[DiMazE]}{dt} = k_{Di_{MazE}}[MazE] - k_{-Di_{MazE}}[DiMazE] - k_{Hexa}[DiMazE][DiMazF]^2 \\
+
<!-- 折り畳まれ部分 -->
+ k_{-Hexa}[MazHexamer] - d_{DiMazE}[DiMazE] $$<br>
+
<div id="open3" style="display:none;clear:both;">
$$ \frac{d[MazHexa]}{dt} = k_{Hexa}[DiMazE][DiMazF]^2 - k_{-Hexa}[MazHexa] - d_{Hexa}[MazHexa] $$<br>
+
 
We used genetic algorithm to fit the parameters to the experimental data. We used ODs at 7 points and fit them to experimental ODs.
+
<p class="normal_text">Since there are only few researches that actually discussed on the kinetics of the TA system, we estimated the parameters for our TA system. We got the experimental data from <a href="https://2016.igem.org/Team:Tokyo_Tech/Toxin_Assay/mazEF_System_Assay">Toxin assay</a> for this fitting. The differential equations representing the TA system are described as follows:
 +
\begin{equation}
 +
\frac{d[MazF]}{dt} = \alpha [mRNA_{MazF}] - 2k_{Di_{MazF}}[MazF] + 2k_{-Di_{MazF}}[DiMazF] - d_{MazF}[MazF] \nonumber
 +
\end{equation}
 +
<br>
 +
\begin{eqnarray}
 +
\frac{d[DiMazF]}{dt} &=& k_{Di_{MazF}}[MazF] - k_{-Di_{MazF}}[DiMazF] - 2k_{Hexa}[DiMazE][DiMazF]^2 \nonumber \\
 +
&& + 2k_{-Hexa}[MazHexamer] - d_{DiMazF}[DiMazF]
 +
\end{eqnarray}
 +
<br>
 +
\begin{equation}
 +
\frac{d[MazE]}{dt} = \alpha [mRNA_{MazE}] - 2k_{Di_{MazE}}[MazE] + 2k_{-Di_{MazE}}[DiMazE] - d_{MazE}[MazE] \nonumber
 +
\end{equation}
 +
<br>
 +
\begin{eqnarray}
 +
\frac{d[DiMazE]}{dt} &=& k_{Di_{MazE}}[MazE] - k_{-Di_{MazE}}[DiMazE] - k_{Hexa}[DiMazE][DiMazF]^2 \nonumber \\
 +
&& + k_{-Hexa}[MazHexamer] - d_{DiMazE}[DiMazE]
 +
\end{eqnarray}
 +
<br>
 +
\begin{equation}
 +
\frac{d[MazHexa]}{dt} = k_{Hexa}[DiMazE][DiMazF]^2 - k_{-Hexa}[MazHexa] - d_{Hexa}[MazHexa] \nonumber
 +
\end{equation}
 +
<br>
 +
We used genetic algorithms to fit this data. We used ODs at 7 points and fit them to experimental ODs.
 
</p>
 
</p>
  
<div align="center"><img src="https://static.igem.org/mediawiki/2016/8/8e/T--Tokyo_Tech--FittingTA.png" height ="500"><br></div>
+
<div align="center"><img src="https://static.igem.org/mediawiki/2016/8/8e/T--Tokyo_Tech--FittingTA.png" height ="400"><br></div>
 
<div align="center"><p class="caption" style="font-size: 16px; text-align: center;"><span style="font-weight: bold;">Fig.5-3-2. Fitted growth curve of <span style ="font-style : italic">E.coli</span> to the experimental data of TA system</span> </div>
 
<div align="center"><p class="caption" style="font-size: 16px; text-align: center;"><span style="font-weight: bold;">Fig.5-3-2. Fitted growth curve of <span style ="font-style : italic">E.coli</span> to the experimental data of TA system</span> </div>
  
Line 439: Line 472:
 
    </div> <!-- toxin_contents-->
 
    </div> <!-- toxin_contents-->
 
    </div><!--toxin-->
 
    </div><!--toxin-->
 
+
</div>
 
<div id="promoters">
 
<div id="promoters">
 
<div id="promoters_header">
 
<div id="promoters_header">
Line 445: Line 478:
 
</div><!-- /_header -->
 
</div><!-- /_header -->
 
<div id="promoters_contents">
 
<div id="promoters_contents">
<p class="normal_text">We measured the relation between the AHL inputted and the fluorescence intensity with our data.<br>
+
 
 +
<div onclick="obj=document.getElementById('open4').style; obj.display=(obj.display=='none')?'block':'none';">
 +
<a style="cursor:pointer;">▼Read more</a>
 +
</div>
 +
<!--// 折り畳み展開ポインタ -->
 +
<!-- 折り畳まれ部分 -->
 +
<div id="open4" style="display:none;clear:both;">
 +
 
 +
<p class="normal_text">We measured the relation between the AHL inputted and the fluorescence intensity.<br>
 
Changing the AHL concentration from 10<sup>-4</sup> to 10<sup>4</sup> by one power of 10 at a time, we measured the fluorescence intensity 4 hours after the insertion. We then performed the fitting with these data.<br>
 
Changing the AHL concentration from 10<sup>-4</sup> to 10<sup>4</sup> by one power of 10 at a time, we measured the fluorescence intensity 4 hours after the insertion. We then performed the fitting with these data.<br>
 
In our experimental data we only measured the fluorescence intensity of GFP. However, we can only do the modulation for the concentration of GFP. Therefore, we needed the relationship between the concentration of GFP by modeling and the fluorescence intensity by experiment. We assumed that the fluorescence intensity is proportional to the concentration of GFP. We determined the parameter from experimental data.<br></p>
 
In our experimental data we only measured the fluorescence intensity of GFP. However, we can only do the modulation for the concentration of GFP. Therefore, we needed the relationship between the concentration of GFP by modeling and the fluorescence intensity by experiment. We assumed that the fluorescence intensity is proportional to the concentration of GFP. We determined the parameter from experimental data.<br></p>
Line 463: Line 504:
 
<p class="normal_text">We obtained these parameters as follows:<br></p>
 
<p class="normal_text">We obtained these parameters as follows:<br></p>
 
<p class="normal_text" style="text-align: center;">Leak<sub>Prhl</sub> = 0.86  <br>
 
<p class="normal_text" style="text-align: center;">Leak<sub>Prhl</sub> = 0.86  <br>
                                                                            κ<sub>Rhl</sub> = 1.326<br>
+
                                                                            κ<sub>Rhl</sub> &=& 1.326<br>
                                                                            n<sub>Rhl</sub> = 5 <br>
+
                                                                            n<sub>Rhl</sub> &=& 5 <br>
                                                                            K<sub>mRhl</sub> = 1000 <br>
+
                                                                            K<sub>mRhl</sub> &=& 1000 <br>
 
  </p>
 
  </p>
  
Line 478: Line 519:
 
    </div> <!--promoters_contents-->
 
    </div> <!--promoters_contents-->
 
    </div><!--promoters-->
 
    </div><!--promoters-->
 
+
</div>
 
<div id="more">
 
<div id="more">
 
<div id="more_header">
 
<div id="more_header">
Line 484: Line 525:
 
</div><!-- /_header -->
 
</div><!-- /_header -->
 
<div id="more_contents">
 
<div id="more_contents">
<p class="normal_text">We defined the differential equations and estimated the parameters in the AHL - GFP system as described in 3-3. However, the translation from mRNA to protein was not considered in the model. To simulate the story of ‘Snow White,the translation is essential because the whole system includes the toxin-antitoxin system involving the cleavage of mRNA. We also had to take in account in our fitting that the AHL inputted at the beginning decreases with time.<br>
+
 
 +
<div onclick="obj=document.getElementById('open5').style; obj.display=(obj.display=='none')?'block':'none';">
 +
<a style="cursor:pointer;">▼Read more</a>
 +
</div>
 +
<!--// 折り畳み展開ポインタ -->
 +
<!-- 折り畳まれ部分 -->
 +
<div id="open5" style="display:none;clear:both;">
 +
 
 +
<p class="normal_text">We defined the differential equations and estimated the parameters in the AHL - GFP system as described in 3-3. However, the translation from mRNA to protein was not considered in the model. To simulate the story of "the Snow White," the translation is essential because the whole system includes the toxin-antitoxin system involving the cleavage of mRNA. We also had to take in account in our fitting that the AHL inputted at the beginning decreases with time.<br>
 
Then, we redefined the following set of differential equations.<br>
 
Then, we redefined the following set of differential equations.<br>
 
$$ \frac{d[mRNA_{GFP}]}{dt} = leak_{Prhl} + \frac{κ_{Rhl}[C4]^{n_{Rhl}}}{K_{mRhl}^{n_{Rhl}} + [C4]^{n_{Rhl}}} - d[mRNA_{GFP}]$$<br>
 
$$ \frac{d[mRNA_{GFP}]}{dt} = leak_{Prhl} + \frac{κ_{Rhl}[C4]^{n_{Rhl}}}{K_{mRhl}^{n_{Rhl}} + [C4]^{n_{Rhl}}} - d[mRNA_{GFP}]$$<br>
Line 505: Line 554:
 
</p>
 
</p>
 
<p class="normal_text">Using these parameters we simulated the reproduction of the story of Snow White.</p>
 
<p class="normal_text">Using these parameters we simulated the reproduction of the story of Snow White.</p>
 
 
 
    </div> <!--more_contents-->
 
    </div> <!--more_contents-->
 
    </div><!--more-->
 
    </div><!--more-->
 
+
</div>
 
</div><!-- /fitting_contents -->
 
</div><!-- /fitting_contents -->
 
</div><!-- /fitting -->
 
</div><!-- /fitting -->
Line 516: Line 563:
 
<div id="analysis" class="container">
 
<div id="analysis" class="container">
 
<div id="analysis_header" class="container_header">
 
<div id="analysis_header" class="container_header">
<h2><span>4. Sensitivity analysis</span></h2>
+
<h2><span>4. Analysis</span></h2>
 
</div><!-- /analysis_header -->
 
</div><!-- /analysis_header -->
 
<div id="analysis_contents" class="container_contents">
 
<div id="analysis_contents" class="container_contents">
<p class="normal_text">We performed the sensitivity analysis descried in this section in order to examine which parameter dominates the story.</p>
+
 
 +
<div id="prince_coli">
 +
<div id="prince_coli_header">
 +
<h3><span>4-1. The Prince <span style ="font-style : italic">coli</span> should be put in during the process</span></h3>
 +
</div><!-- /_header -->
 +
<div id="prince_coli_contents">
 +
<p class="normal_text">We run simulations in order to determine whether we would get a better behavior let we introduce the Prince <span style ="font-style : italic">coli</span> at the beginning or halfway of the story.</p>
 +
 
 +
    <div class="floating"><img src="https://static.igem.org/mediawiki/2016/1/1f/T--Tokyo_Tech--Population-miss.png" height ="300" class="align_left">
 +
    <p class="caption" style="font-size: 16px; text-align: center;"><span style="font-weight: bold;">Fig.5-4-1-1. Number of individuals when the Prince <span style ="font-style : italic">coli</span> is introduced from the beginning</span></p></div>
 +
    <div class="floating"><img src="https://static.igem.org/mediawiki/2016/f/f1/T--Tokyo_Tech--AHL-miss.png" height ="300" class="align_right">
 +
    <p class="caption" style="font-size: 16px; text-align: center;"><span style="font-weight: bold;">Fig.5-4-1-2. AHL concentrations when the Prince <span style ="font-style : italic">coli</span> is introduced from the beginning</span></p></div>
 +
 
 +
                  <p class="normal_text">As a result, if we introduce the Prince <span style ="font-style : italic">coli</span> from the beginning, the number of Prince <span style ="font-style : italic">coli</span> increases too much (Fig.5-4-1-1) so the AmiE the Prince <span style ="font-style : italic">coli</span> produces augments and the decomposition of C12 also occurs overly. So C12 is almost inexistent in the medium (Fig.5-4-1-2).</p>
 +
 
 +
                  <div class="floating"><img src="https://static.igem.org/mediawiki/2016/e/e7/T--Tokyo_Tech--Population.png" height ="300" class="align_left"><br>
 +
    <p class="caption" style="font-size: 16px; text-align: center;"><span style="font-weight: bold;">Fig.5-4-1-3. Number of individuals when the Prince <span style ="font-style : italic">coli</span> is introduced at t = 700</span></div>
 +
    <div class="floating"><img src="https://static.igem.org/mediawiki/2016/4/4f/T--Tokyo_Tech--AHL.png" height ="300" class="align_right"><br>
 +
    <p class="caption" style="font-size: 16px; text-align: center;"><span style="font-weight: bold;">Fig.5-4-1-4. AHL concentrations when the Prince <span style ="font-style : italic">coli</span> is introduced at t = 700</span></div>
 +
 
 +
                  <p class="normal_text">On the other hand, if we introduce the Prince <span style ="font-style : italic">coli</span> at t = 700, the number of Prince <span style ="font-style : italic">coli</span> does not increment much (Fig.5-4-1-3), so C12 can exist until t = 700 and then decreases thanks to the augment of AmiE (Fig.5-4-1-4).<br>In conclusion, if we introduce the Prince <span style ="font-style : italic">coli</span> at t = 700, the circuit will behave accordingly.</p>
 +
</p>
 +
</div></div> <!-- header -->
 +
<br>
 +
<div id="prhl">
 +
<div id="prhl_header">
 +
<h3><span>4-2. Prhl should be changed</span></h3>
 +
</div><!-- /_header -->
 +
<div id="prhl_contents">
 +
<p class="normal_text">In order to confirm the feasibility of the story with our gene circuit by the combination of the existing promoters, we performed some simulations based on the results of our assays.</p>
 +
<div align="center"><img src="https://static.igem.org/mediawiki/2016/6/68/T--Tokyo_Tech--projct_model1.png" height ="450"><br></div>
 +
<div align="center"><p class="caption" style="font-size: 16px; text-align: center;"><span style="font-weight: bold;">Fig.5-4-2. The intensity of Plux and Prhl promoters</span>
 +
                  <p class="normal_text">The diagram above shows that the intensity of the two promoters should be in the red region of the figure.The combination of promoters which we were originally going to use is shown in the graph by the green point. To move this point into the red region, we had to improve Prhl to raise its expression level.</p>
 +
</p>
 +
</div>
 +
</div></div>
 
<br>
 
<br>
 
<div id="requirements">
 
<div id="requirements">
 
<div id="requirements_header">
 
<div id="requirements_header">
<h3><span>4-1. Requirements</span></h3>
+
<h3><span>4-3. Requirements</span></h3>
 
</div><!-- /_header -->
 
</div><!-- /_header -->
 
<div id="requirements_contents">
 
<div id="requirements_contents">
<p class="normal_text">We defined these requirements as the “successful Snow White story.”<br>
+
 
 +
<div onclick="obj=document.getElementById('open6').style; obj.display=(obj.display=='none')?'block':'none';">
 +
<a style="cursor:pointer;">▼Read more</a>
 +
</div>
 +
<!--// 折り畳み展開ポインタ -->
 +
<!-- 折り畳まれ部分 -->
 +
<div id="open6" style="display:none;clear:both;">
 +
 
 +
<p class="normal_text">We performed the sensitivity analysis descried in this section in order to examine which parameter dominates the story. We defined these requirements as the “successful Snow White story.”<br>
 
1) At t = 150<br>
 
1) At t = 150<br>
 
    &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;concentration of RFP > concentration of GFP<br>
 
    &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;concentration of RFP > concentration of GFP<br>
Line 533: Line 623:
 
3) At t = 1500<br>
 
3) At t = 1500<br>
 
    &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;concentration  of RFP > concentration of GFP<br></p>
 
    &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;concentration  of RFP > concentration of GFP<br></p>
<p class="normal_text">We the began to analyze the graph that satisfies these requirements that we could say that reproduces the story correctly. In the table bellow we show the range in which we modified each parameter. They were modified one step size at a time.<br></p>
+
<p class="normal_text">We the began to analyze the graph that satisfies these requirements that we could say that recreates the story correctly. In the table bellow we show the range in which we modified each parameter. They were modified one step size at a time.<br></p>
 
    <table border="1" style="margin: auto;">
 
    <table border="1" style="margin: auto;">
 
<tbody>
 
<tbody>
Line 541: Line 631:
 
<tr><td>p<sub>C12</sub></td><td> $$ 0.0001 < p_{C12} < 1 $$</td><td> 0.001 </td></tr>
 
<tr><td>p<sub>C12</sub></td><td> $$ 0.0001 < p_{C12} < 1 $$</td><td> 0.001 </td></tr>
 
<tr><td>α</td><td> $$ 0.01 < α < 0.2 $$</td><td> 0.01 </td></tr>
 
<tr><td>α</td><td> $$ 0.01 < α < 0.2 $$</td><td> 0.01 </td></tr>
<tr><td>d<sub>AmiE</sub> $$</td><td> $$ 0.001 < d_{AmiE} < 1 $$ </td><td> 0.001 </td></tr>
+
<tr><td>d<sub>AmiE</sub> </td><td> $$ 0.001 < d_{AmiE} < 1 $$ </td><td> 0.001 </td></tr>
 
    </tbody>
 
    </tbody>
 
    </table>
 
    </table>
Line 557: Line 647:
 
    </table>
 
    </table>
 
</p>
 
</p>
 +
</div>
 
</div> </div> <!-- requirements-->
 
</div> </div> <!-- requirements-->
<br>
 
<div id="prince_coli">
 
<div id="prince_coli_header">
 
<h3><span>4-2. the Prince <span style ="font-style : italic">coli</span> should be put in during the process</span></h3>
 
</div><!-- /_header -->
 
<div id="prince_coli_contents">
 
<p class="normal_text">We run simulations in order to determine whether we would get a better behavior let we introduce the Prince <span style ="font-style : italic">coli</span> at the beginning or halfway of the story.</p>
 
 
    <div class="floating"><img src="https://static.igem.org/mediawiki/2016/1/1f/T--Tokyo_Tech--Population-miss.png" height ="300" class="align_left">
 
    <p class="caption" style="font-size: 16px; text-align: center;"><span style="font-weight: bold;">Fig.5-4-2-1. Number of individuals when the Prince <span style ="font-style : italic">coli</span> is introduced from the beginning</span></p></div>
 
    <div class="floating"><img src="https://static.igem.org/mediawiki/2016/f/f1/T--Tokyo_Tech--AHL-miss.png" height ="300" class="align_right">
 
    <p class="caption" style="font-size: 16px; text-align: center;"><span style="font-weight: bold;">Fig.5-4-2-2. AHL concentrations when the Prince <span style ="font-style : italic">coli</span> is introduced from the beginning</span></p></div>
 
 
                  <p class="normal_text">As a result, if we introduce the Prince <span style ="font-style : italic">coli</span> from the beginning, the number of Prince <span style ="font-style : italic">coli</span> increases too much (Fig.5-4-2-1) so the AmiE the Prince <span style ="font-style : italic">coli</span> produces augments and the decomposition of C12 also occurs overly. So C12 is almost inexistent in the medium (Fig.5-4-2-2).</p>
 
 
                  <div class="floating"><img src="https://static.igem.org/mediawiki/2016/e/e7/T--Tokyo_Tech--Population.png" height ="300" class="align_left"><br>
 
    <p class="caption" style="font-size: 16px; text-align: center;"><span style="font-weight: bold;">Fig.5-4-2-3. Number of individuals when the Prince <span style ="font-style : italic">coli</span> is introduced at t = 700</span></div>
 
    <div class="floating"><img src="https://static.igem.org/mediawiki/2016/4/4f/T--Tokyo_Tech--AHL.png" height ="300" class="align_right"><br>
 
    <p class="caption" style="font-size: 16px; text-align: center;"><span style="font-weight: bold;">Fig.5-4-2-4. AHL concentrations when the Prince <span style ="font-style : italic">coli</span> is introduced at t = 700</span></div>
 
 
                  <p class="normal_text">On the other hand, if we introduce the Prince <span style ="font-style : italic">coli</span> at t = 600, the number of Prince <span style ="font-style : italic">coli</span> does not increment much (Fig.5-4-2-3), so C12 can exist until t = 600 and then decreases thanks to the augment of AmiE (Fig.5-4-2-4).<br>In conclusion, if we introduce the Prince <span style ="font-style : italic">coli</span> at t = 700, the circuit will behave accordingly.</p>
 
</p>
 
</div></div> <!-- header -->
 
<br>
 
<div id="prhl">
 
<div id="prhl_header">
 
<h3><span>4-3. Prhl should be changed</span></h3>
 
</div><!-- /_header -->
 
<div id="prhl_contents">
 
<p class="normal_text">In order to confirm whether we could be able to reproduce the story with our gene circuit by using a combination of the current promoters, we performed some simulations based on the results of our assays.</p>
 
<div align="center"><img src="https://static.igem.org/mediawiki/2016/6/68/T--Tokyo_Tech--projct_model1.png" height ="450"><br></div>
 
<div align="center"><p class="caption" style="font-size: 16px; text-align: center;"><span style="font-weight: bold;">Fig.5-4-3. The intensity of Plux and Prhl promoters</span>
 
                  <p class="normal_text">The diagram above shows that the intensity of the two promoters should be in the red region of the figure.The combination of promoters which we were originally going to use is shown in the graph by the green point. To move this point into the red region, we had to improve Prhl to raise its expression level.</p>
 
</p>
 
</div>
 
</div></div> <!-- 4-3-->
 
 
<br>
 
<br>
 
<div id="production_ahl">
 
<div id="production_ahl">
Line 600: Line 655:
 
</div><!-- /_header -->
 
</div><!-- /_header -->
 
<div id="production_ahl_contents">
 
<div id="production_ahl_contents">
 +
 +
<div onclick="obj=document.getElementById('open7').style; obj.display=(obj.display=='none')?'block':'none';">
 +
<a style="cursor:pointer;">▼Read more</a>
 +
</div>
 +
<!--// 折り畳み展開ポインタ -->
 +
<!-- 折り畳まれ部分 -->
 +
<div id="open7" style="display:none;clear:both;">
 +
 
<p class="normal_text">The signaling molecule production rates by RhlI and LasI can be changed by modifying RhlI and LasI to make more or less signaling molecule in silico.</p>
 
<p class="normal_text">The signaling molecule production rates by RhlI and LasI can be changed by modifying RhlI and LasI to make more or less signaling molecule in silico.</p>
  
Line 606: Line 669:
  
 
                   <p class="normal_text">Each line corresponds to the transition of the concentration of RFP and GFP with a certain production rate of C12. Red and green lines correspond to RFP and GFP, respectively. Blighter one indicates higher production rate of C12.<br>
 
                   <p class="normal_text">Each line corresponds to the transition of the concentration of RFP and GFP with a certain production rate of C12. Red and green lines correspond to RFP and GFP, respectively. Blighter one indicates higher production rate of C12.<br>
                   If the production rate of C4 is between 0.029 and 0.778, our system can reproduce the story. If this parameter is too small, The production of LasI by the Queen <span style ="font-style : italic">coli</span> is insufficiently inhibited by MazF so C12 increases greatly. As a result, The concentration of GFP overcomes the concentration of RFP and the story does not develop correctly. And if this parameter is too big, the production of LasI by the Queen <span style ="font-style : italic">coli</span>  is overly inhibited by MazF so C12 does not increase.<br>
+
                   If the production rate of C4 is between 0.029 and 0.778, our system can recreate the story. If this parameter is too small, the production of LasI by the Queen <span style ="font-style : italic">coli</span> is insufficiently inhibited by MazF so C12 increases greatly. As a result, The concentration of GFP overcomes the concentration of RFP and the story does not develop correctly. And if this parameter is too big, the production of LasI by the Queen <span style ="font-style : italic">coli</span>  is overly inhibited by MazF so C12 does not increase.<br>
 
                   As a result, the concentration of RFP is always greater than the GFP concentration and the story does not develop either.</p>
 
                   As a result, the concentration of RFP is always greater than the GFP concentration and the story does not develop either.</p>
 
  </div>
 
  </div>
Line 614: Line 677:
  
 
                   <p class="normal_text">Each line corresponds to the transition of the concentration of RFP/GFP with a certain production rate of C4. Red and green lines correspond to RFP and GFP, respectively. Blighter one indicates higher production rate of C4.<br>
 
                   <p class="normal_text">Each line corresponds to the transition of the concentration of RFP/GFP with a certain production rate of C4. Red and green lines correspond to RFP and GFP, respectively. Blighter one indicates higher production rate of C4.<br>
                     If production rate of C12 is between 0.001 and 0.217, our system can reproduce the story.</p>
+
                     If production rate of C12 is between 0.001 and 0.217, our system can recreate the story.</p>
 
</p>
 
</p>
 
</div>
 
</div>
  
 
</div></div> <!--4-4-->
 
</div></div> <!--4-4-->
 +
</div>
 
<br>
 
<br>
 
<div id="translation">
 
<div id="translation">
Line 625: Line 689:
 
</div><!-- /_header -->
 
</div><!-- /_header -->
 
<div id="translation_contents">
 
<div id="translation_contents">
<p class="normal_text">Translation rate affects the production of protein.</p>
 
  
 +
<div onclick="obj=document.getElementById('open8').style; obj.display=(obj.display=='none')?'block':'none';">
 +
<a style="cursor:pointer;">▼Read more</a>
 +
</div>
 +
<!--// 折り畳み展開ポインタ -->
 +
<!-- 折り畳まれ部分 -->
 +
<div id="open8" style="display:none;clear:both;">
 +
 +
<p class="normal_text">Translation rate affects the production of protein.</p>
 
<div align="center"><img src="https://static.igem.org/mediawiki/2016/0/03/T-Tokyo_Tech--Translation.png" height ="450"><br></div>
 
<div align="center"><img src="https://static.igem.org/mediawiki/2016/0/03/T-Tokyo_Tech--Translation.png" height ="450"><br></div>
 
<div align="center"><p class="caption" style="font-size: 16px; text-align: center;"><span style="font-weight: bold;">Fig.5-4-5. Concentrations of GFP and RFP dependencies of translation rate of proteins</span>
 
<div align="center"><p class="caption" style="font-size: 16px; text-align: center;"><span style="font-weight: bold;">Fig.5-4-5. Concentrations of GFP and RFP dependencies of translation rate of proteins</span>
  
 
                   <p class="normal_text">Each line corresponds to the transition of the concentration of RFP and GFP with a certain translation rate. Red and green lines correspond to RFP and GFP, respectively. Blighter one indicates higher translation rate.<br>
 
                   <p class="normal_text">Each line corresponds to the transition of the concentration of RFP and GFP with a certain translation rate. Red and green lines correspond to RFP and GFP, respectively. Blighter one indicates higher translation rate.<br>
                   If translation rate of protein is between 0.01 and 0.16, our system can reproduce the story.
+
                   If translation rate of protein is between 0.01 and 0.16, our system can recreate the story.
 
</p>
 
</p>
 
</div>
 
</div>
 
</div></div> <!-- 4-5-->
 
</div></div> <!-- 4-5-->
 +
</div>
 
<br>
 
<br>
 
<div id="decomposition">
 
<div id="decomposition">
Line 641: Line 713:
 
</div><!-- /_header -->
 
</div><!-- /_header -->
 
<div id="decomposition_contents">
 
<div id="decomposition_contents">
 +
 +
<div onclick="obj=document.getElementById('open9').style; obj.display=(obj.display=='none')?'block':'none';">
 +
<a style="cursor:pointer;">▼Read more</a>
 +
</div>
 +
<!--// 折り畳み展開ポインタ -->
 +
<!-- 折り畳まれ部分 -->
 +
<div id="open9" style="display:none;clear:both;">
 +
 
<p class="normal_text">AmiE decomposes C12. The concentration of C12 after input of the Prince <span style ="font-style : italic">coli</span> is changed by AmiE. If the decomposition rate of C12 is too small, C12 does not decrease enough so the MazF inside Snow White <span style ="font-style : italic">coli</span> continues being expressed and the concentration of RFP decreases.</p>
 
<p class="normal_text">AmiE decomposes C12. The concentration of C12 after input of the Prince <span style ="font-style : italic">coli</span> is changed by AmiE. If the decomposition rate of C12 is too small, C12 does not decrease enough so the MazF inside Snow White <span style ="font-style : italic">coli</span> continues being expressed and the concentration of RFP decreases.</p>
  
 
<div align="center"><img src="https://static.igem.org/mediawiki/2016/0/08/T--Tokyo_Tech--Decomposition.png" height ="450"><br></div>
 
<div align="center"><img src="https://static.igem.org/mediawiki/2016/0/08/T--Tokyo_Tech--Decomposition.png" height ="450"><br></div>
 
<div align="center"><p class="caption" style="font-size: 16px; text-align: center;"><span style="font-weight: bold;">Fig.5-4-6. Concentrations of GFP and RFP dependencies of decomposition rate of C12 by AmiE</span>
 
<div align="center"><p class="caption" style="font-size: 16px; text-align: center;"><span style="font-weight: bold;">Fig.5-4-6. Concentrations of GFP and RFP dependencies of decomposition rate of C12 by AmiE</span>
 
 
                   <p class="normal_text">Each line corresponds to the transition of the concentration of RFP and GFP with a certain decomposition rate of C12. Red and green lines correspond to RFP and GFP, respectively. Blighter one indicates higher value of decomposition rate of C12.<br>
 
                   <p class="normal_text">Each line corresponds to the transition of the concentration of RFP and GFP with a certain decomposition rate of C12. Red and green lines correspond to RFP and GFP, respectively. Blighter one indicates higher value of decomposition rate of C12.<br>
                   If degradation rate of C12 is higher than 0.00056, our system can reproduce the story.</p>
+
                   If degradation rate of C12 is higher than 0.00056, our system can recreate the story.</p>
 
</p>
 
</p>
 
</div>
 
</div>
 
</div></div> <!--4-6-->
 
</div></div> <!--4-6-->
 +
</div>
 
<br>
 
<br>
 
<div id="degradation_amie">
 
<div id="degradation_amie">
Line 657: Line 737:
 
</div><!-- /_header -->
 
</div><!-- /_header -->
 
<div id="degradation_amie_contents">
 
<div id="degradation_amie_contents">
 +
 +
<div onclick="obj=document.getElementById('open10').style; obj.display=(obj.display=='none')?'block':'none';">
 +
<a style="cursor:pointer;">▼Read more</a>
 +
</div>
 +
<!--// 折り畳み展開ポインタ -->
 +
<!-- 折り畳まれ部分 -->
 +
<div id="open10" style="display:none;clear:both;">
  
 
<div align="center"><img src="https://static.igem.org/mediawiki/2016/d/d4/T--Tokyo_Tech--DegradationAmiE.png" height ="450"><br></div>
 
<div align="center"><img src="https://static.igem.org/mediawiki/2016/d/d4/T--Tokyo_Tech--DegradationAmiE.png" height ="450"><br></div>
Line 666: Line 753:
 
</div>
 
</div>
 
</div></div> <!--4-7-->
 
</div></div> <!--4-7-->
 +
</div>
 
<br>
 
<br>
 
<div id="degradation_protein">
 
<div id="degradation_protein">
Line 672: Line 760:
 
</div><!-- /_header -->
 
</div><!-- /_header -->
 
<div id="degradation_protein_contents">
 
<div id="degradation_protein_contents">
 +
 +
<div onclick="obj=document.getElementById('open11').style; obj.display=(obj.display=='none')?'block':'none';">
 +
<a style="cursor:pointer;">▼Read more</a>
 +
</div>
 +
<!--// 折り畳み展開ポインタ -->
 +
<!-- 折り畳まれ部分 -->
 +
<div id="open11" style="display:none;clear:both;">
 +
 
<p class="normal_text">The degradation rate of RFP and GFP is key to the success the story of ‘"Snow White".<br>
 
<p class="normal_text">The degradation rate of RFP and GFP is key to the success the story of ‘"Snow White".<br>
These parameters are closely related to the concentrations of GFP and RFP, so we conjectured that if they do not take appropriate values the story can not be correctly reproduced.</p>
+
These parameters are closely related to the concentrations of GFP and RFP, so we conjectured that if they do not take appropriate values the story can not be correctly recreated.</p>
  
 
<div align="center"><img src="https://static.igem.org/mediawiki/2016/a/a0/T--Tokyo_Tech--DegradationGFP.png" height ="450"><br></div>
 
<div align="center"><img src="https://static.igem.org/mediawiki/2016/a/a0/T--Tokyo_Tech--DegradationGFP.png" height ="450"><br></div>
 
<div align="center"><p class="caption" style="font-size: 16px; text-align: center;"><span style="font-weight: bold;">Fig.5-4-8 Relation of degradation rate of GFP and RFP</span>
 
<div align="center"><p class="caption" style="font-size: 16px; text-align: center;"><span style="font-weight: bold;">Fig.5-4-8 Relation of degradation rate of GFP and RFP</span>
  
                   <p class="normal_text">The story is reproduced only if the degradation rate of RFP and GFP are the same.</p>
+
                   <p class="normal_text">The story is recreated only if the degradation rate of RFP and GFP are the same.</p>
 +
</div>
 
</div>
 
</div>
 
 
</div></div> <!--4-8-->
 
</div></div> <!--4-8-->
 
</div><!-- /analysis_contents -->
 
</div><!-- /analysis_contents -->
Line 714: Line 810:
 
<h3><span>5-3. Work flow</span></h3>
 
<h3><span>5-3. Work flow</span></h3>
 
</div><!-- /_header -->
 
</div><!-- /_header -->
 +
 +
<div onclick="obj=document.getElementById('open12').style; obj.display=(obj.display=='none')?'block':'none';">
 +
<a style="cursor:pointer;">▼Read more</a>
 +
</div>
 +
<!--// 折り畳み展開ポインタ -->
 +
<!-- 折り畳まれ部分 -->
 +
<div id="open12" style="display:none;clear:both;">
 +
 
<style type="text/css">
 
<style type="text/css">
 
<!--
 
<!--
Line 747: Line 851:
 
</ol>
 
</ol>
 
</p>
 
</p>
 
+
</div>
 
<br>
 
<br>
 
<div id="demo">
 
<div id="demo">
Line 767: Line 871:
 
<p class="normal_text">We increased the numbers of ACA sequences of RFP and GFP decreased the numbers of ACA sequences of MazF and MazE .<br>
 
<p class="normal_text">We increased the numbers of ACA sequences of RFP and GFP decreased the numbers of ACA sequences of MazF and MazE .<br>
  
                     <div align="center"><img src="https://static.igem.org/mediawiki/2016/c/c9/T--Tokyo_Tech--ACAmodel1.jpg" height ="200"><br></div>
+
                     <div align="center"><img src="https://static.igem.org/mediawiki/2016/c/c9/T--Tokyo_Tech--ACAmodel1.jpg" height ="450"><br></div>
<div align="center"><p class="caption" style="font-size: 16px; text-align: center;"><span style="font-weight: bold;">Fig.5-4. なんてかいたらいいかわかんない! </span></p></div>
+
<div align="center"><p class="caption" style="font-size: 16px; text-align: center;"><span style="font-weight: bold;">Fig.5-4. Comparison between the results of simulations using original sequences and modified sequences</span></p></div>
  
 
<p class="normal_text">We can see that the concentration of expressed MazF reacts more keenly after adjusting the ACA sequences than before doing so.</p>
 
<p class="normal_text">We can see that the concentration of expressed MazF reacts more keenly after adjusting the ACA sequences than before doing so.</p>

Latest revision as of 03:33, 20 October 2016

1. Overview

To recreate the story of ”the Snow White”, we have designed a cell-cell communication system with improved or characterized parts and collected data from comprehensive experiments. Furthermore, we constructed the mathematical model to simulate the behavior of the whole system and to confirm the feasibility of our story. This simulation successfully contributed to give the suggestions to wet lab experiments. In addition, in order to help us utilize our Toxin-Antitoxin (TA) system, we developed a new software in Java for adjusting the number of ACA sequences, which MazF dimer recognizes and cleaves in mRNAs.

2. Story simulation

2-1. Mathematical model

In order to simulate our gene circuits, we developed an ordinary differential equation model.

[Model development]


2-2. Results

We obtained and confirmed the desirable behavior of the whole system by modifying and improving parts. As described below, our simulation showed an appropriate transition of concentration of RFP and GFP for the story.


Fig.5-2.2. Time-dependent change of the concentrations of fluorescent proteins


In the blue area of Fig.5-2-2, the concentration of fluorescent proteins start to increase. The concentration of RFP of Snow White coli exceeds that of GFP of the Queen coli.
It is as if Snow White got fairer more and more.

In the pink area of Fig.5-2-2, the concentration of C12 increase thanks to the appearance of C4. As a result, the MazF inside Snow White coli and the Queen coli start to suppress the increment of fluorescet proteins.
It is as if the Queen, influenced by the Mirror's answer, transforming into a Witch in order to give Snow White a poisoned apple.

In the green area of Fig.5-2-2, the concentration of C12 more increases and the MazF inside Snow White coli more suppress the increment of GFP. So the concentration GFP exceeds that of RFP.
It looks as if Snow White bit the apple, sinking into unconsciousness soon.

In the yellow area of Fig.5-2-2, the AmiE synthesized by the introduced Prince coli decomposes C12 so the MazF inside Snow White coli diminishes and the concentration of GFP resumes.
It looks as if the Prince lifted Snow White and she opened her eyes.

3. Fitting

3-1. Population growth

First, we tried to model the growth curve of the system. When the number of E. coli approaches a certain value, the growth will stop. We defined this value in the culture as Pmax. Then the population growth equation for our system is described as follows:
$$ \frac{dP}{dt} = g\left(1 - \frac{P}{P_{max}}\right)P$$
where g is the population growth rate.
This equation can be analytically solved as:
$$ P = \frac{P_{0} P_{max} e^{gt}}{P_{max} - P_{0} + P_{0} e^{gt}}$$
where P 0 is the population at t = 0. We used this equation to fit the experimental data.


Fig.5-3-1. Modeled growth curve of E. coli fitted to experiment data

Using the experimental data from the Toxin assay for this fitting, we estimated the following parameters:

g = 0.0123
and
Pmax =3.3

respectively.
These parameters can be used for Snow White coli, the Queen coli and the Prince coli in the same way.

3-2. Toxin-Antitoxin system

3-3. Promoters

3-4. More realistic model with mRNA

4. Analysis

4-1. The Prince coli should be put in during the process

We run simulations in order to determine whether we would get a better behavior let we introduce the Prince coli at the beginning or halfway of the story.

Fig.5-4-1-1. Number of individuals when the Prince coli is introduced from the beginning

Fig.5-4-1-2. AHL concentrations when the Prince coli is introduced from the beginning

As a result, if we introduce the Prince coli from the beginning, the number of Prince coli increases too much (Fig.5-4-1-1) so the AmiE the Prince coli produces augments and the decomposition of C12 also occurs overly. So C12 is almost inexistent in the medium (Fig.5-4-1-2).


Fig.5-4-1-3. Number of individuals when the Prince coli is introduced at t = 700


Fig.5-4-1-4. AHL concentrations when the Prince coli is introduced at t = 700

On the other hand, if we introduce the Prince coli at t = 700, the number of Prince coli does not increment much (Fig.5-4-1-3), so C12 can exist until t = 700 and then decreases thanks to the augment of AmiE (Fig.5-4-1-4).
In conclusion, if we introduce the Prince coli at t = 700, the circuit will behave accordingly.


4-2. Prhl should be changed

In order to confirm the feasibility of the story with our gene circuit by the combination of the existing promoters, we performed some simulations based on the results of our assays.


Fig.5-4-2. The intensity of Plux and Prhl promoters

The diagram above shows that the intensity of the two promoters should be in the red region of the figure.The combination of promoters which we were originally going to use is shown in the graph by the green point. To move this point into the red region, we had to improve Prhl to raise its expression level.


4-3. Requirements


4-4. Production rate of C4HSL and 3OC12HSL by RhlI and LasI


4-5. Translation rate of protein


4-6. Decomposition rate of C12 by AmiE


4-7. Degradation rate of AmiE


4-8. Degradation rate of RFP and GFP

5. Software


5-1. Abstract


We developed a new software named ACADwarfs. This software helps to control the sensitivity of the protein to MazF by regulating the number of ACA sequences in the mRNA sequence. ACADwarfs can increase or decrease the number of ACA sequences on mRNA without changing the amino acid sequences that the mRNA specifies or frameshifts resulted from insertion of bases without considering.
Then we improve the practicality of the characteristic of the mazEF system. For example you can let protein A express constantly by eliminating ACA sequences of the sequence, while letting protein B stop being expressed, at the desirable timing, by expression of MazF.
This software also evades the use of rare codons, so you don’t have to worry about them.


5-2. Key achievements

・Provided the tool regulating the number of ACA sequences

・Released under open-source license so everyone can use it

・Able to correspond to any base arrangements

・Rare codons are evaded

・Extend the application field of mazEF system


5-3. Work flow


5-4. Demonstration

We created a demo to present the features of this software. Using this, we regulated the number of ACA sequences and control the sensitivity of the protein to MazF.

Gene Pre number of ACA sequences Post number of ACA sequences
RFP 10 30
GFP 23 39
MazF 2 1
MazE 2 1

We increased the numbers of ACA sequences of RFP and GFP decreased the numbers of ACA sequences of MazF and MazE .


Fig.5-4. Comparison between the results of simulations using original sequences and modified sequences

We can see that the concentration of expressed MazF reacts more keenly after adjusting the ACA sequences than before doing so.


5-5. Download

To download click here.

The code is available on github.