Difference between revisions of "Team:TU Delft"

Line 114: Line 114:
 
                             <div class="reasons-titles">
 
                             <div class="reasons-titles">
  
                                 <h3 class="reasons-title"><a href="https://2016.igem.org/Team:TU_Delft/Project#description">BIOLASERS</a></h3>
+
                                 <h3 class="reasons-title">BIOLENSES</h3>
                                <h5 class="reason-subtitle"></h5>
+
  
 
                             </div>
 
                             </div>
 
+
                             <img src="https://static.igem.org/mediawiki/2016/7/71/TU_Delft_frontlens.png" alt="lenses">                  
                             <img src="https://static.igem.org/mediawiki/2016/b/bd/TU_Delft_frontlaser.png" alt="laser">
+
 
+
  
 
                             <div class="on-hover">
 
                             <div class="on-hover">
  
                                 <p> <strong>Imaging cells </strong>is essential for understanding life at the smallest scale and fighting cellular diseases like cancer. Imaging often relies on <strong>fluorescence</strong>, but fluorescent proteins have some drawbacks, such as their wide spectrum and low intensity.</p>
+
                                 <p>The goal of our <strong>microlenses</strong> is to increase the fraction of light captured by solar cells and cameras. To produce microlenses, we expressed the enzyme <strong>silicatein</strong> in our engineered cells, which catalyzes polymerization of silicic acid <a href="https://2016.igem.org/Team:TU_Delft#references">(Cha et al., 1999)</a>. This resulted in a <strong>biosilica layer</strong> around the cell <a href="https://2016.igem.org/Team:TU_Delft#references">(MULLER et al., 2008)</a>. We also overexpressed the gene <i>bolA</i> in our silica covered cells, which produces a round cell shape when overexpressed <a href="https://2016.igem.org/Team:TU_Delft#references">(Aldea & Concha, 1988)</a>. Together this allows the cell to function as a microlens. When we make a grid of lenses, a <strong>microlens array</strong>, we can use the lens for a coating for solar panels, thin lightweight cameras with high resolution or 3D screens.</p>                                
                                <p> Our <strong>biolasers</strong> will provide an accurate, safe and biological way to improve this.</p>
+
                                <p> Fluorescence is the ability of a molecule to take up the energy of a photon and release it again, which makes the molecule light up.<strong> Lasing</strong> works with the same principle as fluorescence, but now the light source is put between <strong>mirrors</strong>. The photons keep <strong>‘bouncing’</strong>, increasing the energy of the system. When the light gets a certain power, the photons can escape in the form of a laser beam.</p>
+
                                <p>A biolaser is achieved by trapping fluorescent proteins inside a <strong>reflective agent</strong>. We have chosen two reflective agents: bioglass (polysilicate) and bioplastic (PHB). By covering a cell with <strong>polysilicate</strong>, the photons can resonate inside the cell, making a whole-cell laser. The polysilicate is synthesized by an enzyme called <strong>silicatein</strong>, which is expressed on the cell wall by fusion to membrane proteins. By filling a cell with <strong>PHB</strong>, which forms intracellular granules, the photons can resonate inside a part of the cell, making an intracellular laser. The PHB is synthesized after expressing the pha-operon. By fusing the GFP to the PHB synthase, the GFP is relocated into the <strong>PHB granules</strong>.</p>                              
+
 
                             </div>
 
                             </div>
                        </div>
 
  
                    </div>
 
  
 +
                        </div>
  
 +
                    </div>
 
                     <div class="col-md-6">
 
                     <div class="col-md-6">
  
Line 140: Line 134:
 
                             <div class="reasons-titles">
 
                             <div class="reasons-titles">
  
                                 <h3 class="reasons-title"><a href="https://2016.igem.org/Team:TU_Delft/Project#description">BIOLENSES</a></h3>
+
                                 <h3 class="reasons-title">BIOLASERS</h3>
                                <h5 class="reason-subtitle"></h5>
+
  
 
                             </div>
 
                             </div>
                            <img src="https://static.igem.org/mediawiki/2016/7/71/TU_Delft_frontlens.png" alt="lenses">                   
 
  
                             <div class="on-hover">
+
                             <img src="https://static.igem.org/mediawiki/2016/b/bd/TU_Delft_frontlaser.png" alt="laser">
  
                                <p><strong>Microlenses</strong> are an emerging field in technology and have a ton of applications, including high-tech cameras, chips, solar panels and research & imaging techniques. However, they are expensive, hard to fabricate and the production uses heavy chemicals and high temperatures, so it is bad for the <strong>environment</strong>. </p>
 
                                <p>Our biological microlens will be cheap, easy to make and environmentally friendly.</p>
 
                                <p>When we cover a cell with <strong>polysilicate</strong>, using the enzyme <strong>silicatein</strong>, we are able to make a biological microlens. By overexpressing either the transcriptional regulator bolA or the cell division inhibitor sulA we can play with cell <strong>morphology</strong> and investigate <strong>optical properties</strong>. These enlarged cells can also be used in the lasing experiments. The single cell will be able to diffract light as a <strong>single microlens</strong>. When we make a grid of lenses, a <strong>microlens array</strong>, we can use the lens for a coating for solar panels, thin lightweight cameras with high resolution or 3D screens.</p>                               
 
                            </div>
 
  
 +
                            <div class="on-hover">
  
 +
                                <p>The goal of our <strong>biolasers</strong> is to improve current imaging techniques by increasing the fluorescence output of the cells and by narrowing the wavelength spectrum of the light emitted by the cells. We did this by expressing <strong>fluorescent proteins</strong> within our <strong>biosilica</strong>-covered cells. When exciting the fluorophores, a fraction of the photons are trapped inside the cell by the biosilica layer. These photons excite other fluorescent proteins and <strong>stimulated emission</strong> occurs. This process results in light with a higher intensity and a narrower colour spectrum compared to conventional fluorescence.</p>                               
 +
                            </div>
 
                         </div>
 
                         </div>
  
 
                     </div>
 
                     </div>
 +
 +
 +
  
  
Line 166: Line 160:
 
         </div>
 
         </div>
  
 +
        <span class="anchor" id="references"></span>
 +
        <div class="references container">
 +
            <h4 class="footer-title">References</h4>
 +
            <ol>
 +
                <li>Aldea, M., & Concha, H. C. (1988). Identification, Cloning, and Expression of bolA, an ftsZ-Dependent Morphogene of Escherichia coli. <i>Journal of Bacteriology</i>.</li>
 +
                <li>Cha, J. N., Shimizu, K., Zhou, Y., Christiansen, S. C., Chmelka, B. F., Stucky, G. D., & Morse, D. E. (1999). Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro.<i> Biochemistry, 96</i>, 361–365.</li>
 +
                <li>MULLER, W., ENGEL, S., WANG, X., WOLF, S., TREMEL, W., THAKUR, N., … SCHRODER, H. (2008). Bioencapsulation of living bacteria (Escherichia coli) with poly(silicate) after transformation with silicatein-α gene. <i>Biomaterials</i>, 29(7), 771–779. http://doi.org/10.1016/j.biomaterials.2007.10.038</li>
  
 +
            </ol>
 +
        </div>
  
 
         <!--  Scripts================================================== -->
 
         <!--  Scripts================================================== -->

Revision as of 12:54, 28 September 2016

iGEM TU Delft

We use DNA from sponges to create a little glass-like layer around our cells.

BIOLENSES

lenses

The goal of our microlenses is to increase the fraction of light captured by solar cells and cameras. To produce microlenses, we expressed the enzyme silicatein in our engineered cells, which catalyzes polymerization of silicic acid (Cha et al., 1999). This resulted in a biosilica layer around the cell (MULLER et al., 2008). We also overexpressed the gene bolA in our silica covered cells, which produces a round cell shape when overexpressed (Aldea & Concha, 1988). Together this allows the cell to function as a microlens. When we make a grid of lenses, a microlens array, we can use the lens for a coating for solar panels, thin lightweight cameras with high resolution or 3D screens.

BIOLASERS

laser

The goal of our biolasers is to improve current imaging techniques by increasing the fluorescence output of the cells and by narrowing the wavelength spectrum of the light emitted by the cells. We did this by expressing fluorescent proteins within our biosilica-covered cells. When exciting the fluorophores, a fraction of the photons are trapped inside the cell by the biosilica layer. These photons excite other fluorescent proteins and stimulated emission occurs. This process results in light with a higher intensity and a narrower colour spectrum compared to conventional fluorescence.

  1. Aldea, M., & Concha, H. C. (1988). Identification, Cloning, and Expression of bolA, an ftsZ-Dependent Morphogene of Escherichia coli. Journal of Bacteriology.
  2. Cha, J. N., Shimizu, K., Zhou, Y., Christiansen, S. C., Chmelka, B. F., Stucky, G. D., & Morse, D. E. (1999). Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Biochemistry, 96, 361–365.
  3. MULLER, W., ENGEL, S., WANG, X., WOLF, S., TREMEL, W., THAKUR, N., … SCHRODER, H. (2008). Bioencapsulation of living bacteria (Escherichia coli) with poly(silicate) after transformation with silicatein-α gene. Biomaterials, 29(7), 771–779. http://doi.org/10.1016/j.biomaterials.2007.10.038