Difference between revisions of "Team:Manchester/Description"

Line 4: Line 4:
  
 
<style>
 
<style>
 +
.info1{
 +
    background:#FEE8D6;
 +
    border-radius:30px;
 +
}
 +
 +
.info1{
 +
    background:#fff6e5;
 +
    border-radius:30px;
 +
}
 +
 
.title11{
 
.title11{
 
   font-size:40px;
 
   font-size:40px;
Line 89: Line 99:
 
  </div>
 
  </div>
  
 +
<div class="info1">
 
  <div class="column onethird_size">
 
  <div class="column onethird_size">
  
Line 99: Line 110:
 
   <div class="directlink"><a href="https://2016.igem.org/Team:Manchester/Description/mechanism1"><h1>Click here for more info </h1></a></div>
 
   <div class="directlink"><a href="https://2016.igem.org/Team:Manchester/Description/mechanism1"><h1>Click here for more info </h1></a></div>
 
  </center>  
 
  </center>  
 +
 +
  
 
  </div>
 
  </div>
  
  
 +
</div>
  
  
Line 124: Line 138:
 
   <br />
 
   <br />
  
 +
<div class="info2">
 
<div class="column twothird_size">
 
<div class="column twothird_size">
 
<center>
 
<center>
Line 139: Line 154:
 
  </center>  
 
  </center>  
  
 +
 +
</div>
 
</div>
 
</div>
  

Revision as of 23:13, 6 October 2016

Manchester iGEM 2016

Project Overview




Mechanism 1

Cell Free System


Mechanism 2 overview diagram

Enzymatic colorimetric assays are used to determine the concentration of a chemical in a solution by the conversion of a chromogen substrate into a coloured product. We have engineered Escherichia coli BL21 (DE3) strain to express AOx from Pichia pastoris that will then be used in a cell-free colorimetric system. This method involves the usage of alcohol oxidase (AOx) to oxidise ethanol producing hydrogen peroxide (H2O2) as a by-product. H2O2 is used as an oxidising agent by horseradish peroxidase (HRP) to convert ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)) to produce the colour change [1].






Mechanism 2

Inducible Gene Switch


Mechanism 2 overview diagram

The alc gene expression system is one of the most reliable chemically inducible gene switches for use in plants and fungus. This system relies on the ability of AlcR, a transcription factor, to bind to its target alcA promoter (alcAP). Based on this, we have engineered Escherichia coli K-12 derivative DH5α and BL21 to induce expression of chromoproteins when AlcR binds to alcAP in the presence of ethanol [2].



References

  • Azevedo, A. M., Prazeres, D. M. F., Cabral, J. M., & Fonseca, L. P. (2005). Ethanol biosensors based on alcohol oxidase. Biosensors and Bioelectronics,21(2), 235-247.
  • Panozzo, C., Capuano, V., Fillinger, S. and Felenbok, B. (1997) ‘The zinc binuclear cluster Activator AlcR is able to bind to single sites but requires multiple repeated sites for synergistic activation of the alcA gene in Aspergillus nidulans’, Journal of Biological Chemistry, 272(36), pp. 22859–22865.