Difference between revisions of "Team:BGU ISRAEL/Results"

Line 70: Line 70:
 
         <div class="container-fluid">
 
         <div class="container-fluid">
 
             <div class="row resultsContent">
 
             <div class="row resultsContent">
                 <div class="col-lg-1"></div>
+
                 <div class="col-lg-2"></div>
                 <div class="col-lg-5">
+
                 <div class="col-lg-8">
 
                     <div class="row">
 
                     <div class="row">
 
                         <div class="resultsHeadLine">
 
                         <div class="resultsHeadLine">
Line 82: Line 82:
 
                     </div>
 
                     </div>
 
                 </div>
 
                 </div>
                <div class="col-lg-5">
+
 
                    <img>
+
                </div>
+
 
             </div>
 
             </div>
 
             <div class="row resultsContent">
 
             <div class="row resultsContent">
                 <div class="col-lg-1"></div>
+
                 <div class="col-lg-2"></div>
                 <div class="col-lg-5">
+
                 <div class="col-lg-8">
 
                     <div class="row">
 
                     <div class="row">
 
                         <div class="resultsHeadLine">
 
                         <div class="resultsHeadLine">
Line 104: Line 102:
 
                         </figure>
 
                         </figure>
 
                     </div>
 
                     </div>
                </div>
 
                <div class="col-lg-5">
 
                    <img>
 
 
                 </div>
 
                 </div>
 
             </div>
 
             </div>
<div class="row resultsContent">
+
            <div class="row resultsContent">
                 <div class="col-lg-1"></div>
+
                 <div class="col-lg-2"></div>
                 <div class="col-lg-5">
+
                 <div class="col-lg-8">
 
                     <div class="row">
 
                     <div class="row">
 
                         <div class="resultsHeadLine">
 
                         <div class="resultsHeadLine">
Line 178: Line 173:
 
                         </p>
 
                         </p>
 
                     </div>
 
                     </div>
                </div>
 
                <div class="col-lg-5">
 
                    <img>
 
 
                 </div>
 
                 </div>
 
             </div>
 
             </div>

Revision as of 18:35, 8 October 2016

PlastiCure

Results

pNP-Butyrate Assay

One method to assess the activity of our designed mutants is a using the pNP-Butyrate degradation assay. pNP-B is similar in structure to the PET monomer, therefore an increase in its degradation could suggest an increase in the degradation of PET. Upon degradation, pNP-B undergoes a color reaction measurable in a wavelength of 405nm. We performed testing sessions with 96 well plates, testing each variant many times and using the pNP-B, bacteria transformed with an empty vector and without a vector as controls.

P. putida Growth experiments

In order to test the ability of P. putida to grow in an electrochemical fuel cell we had to assess its ability to product a biofilm on Graphite-felt sheets like those used in the fuel cell.
We incubated the bacteria in a liquid M9 minimal medium with glucose and hanged a sheet of graphite-felt half inside the medium and half outside.

Fig. *: P. putida grown in a M9 liquid medium with a graphite-felt sheet. As seen in the photo the bacteria have form a biofilm on the sheet.
R. ruber Growth experiments

The bacterium R. ruber, known to utilize PE (polyethylene) as a carbon source, was grown in various liquid growth media with and without amino-acids and containing PE or PET pellets for a period of 30 days.
For control we used a SM liquid growth medium with glucose, glucose and amino-acids and a SM medium with no carbon source(see Protocols).

Fig. *: R. ruber grown on SM liquid media with various carbon sources for a period of 30 days.

As seen from the results we achieved growth on PE, as expected, and on PET, which the bacteria is not known to utilize as a carbon source.
We wanted to examine the PE and PET degradation by R. ruber as we didn't have a method for measuring the amount of PE/PET degraded.
In order to do so we washed the pellets from any trace of bacteria and examined the samples through a Scanning Electron Microscope:

Fig. *: A scanning electron microscope image of an untreated PE pellet in a X2,500 magnification.
Fig. *: A scanning electron microscope image of a PE pellet after 30 days of incubation with R. ruber in a X2,500 magnification.

As seen from the images above, the bacteria are growing on the surface of the PE, suggesting they are utilizing it as a nutrient.

Fig. *: A scanning electron microscope image of an untreated PET pellet in a X1,000 magnification.
Fig. *: A scanning electron microscope image of an untreated PET pellet in a X2,500 magnification.
Fig. *: A scanning electron microscope image of a PET pellet after 30 days of incubation with R. ruber in a X1,000 magnification.
Fig. *: A scanning electron microscope image of a PET pellet after 30 days of incubation with R. ruber in a X2,500 magnification.

Similar to the PE pellets, we can see the bacteria are growing on the PET, but here we can see a clear difference between the control and the digested PET - there are breaks in the pellet and there is a rod shaped fiber that is more exposed, suggesting it was digested by the bacteria. Moreover, we can see bacteria growing on the edges of the fiber suggesting they are responsible for exposing it.


Our experiments with the R. ruber bacterium show a clear degradation of PET by it, a fact not known before.

Address:

Ben-Gurion University of the Negev
Ben Gurion 1, Beer Sheva 8410501, Israel

Mail: igembgu2016@gmail.com

Connect With Us!

CopyRights