Difference between revisions of "Team:Tokyo Tech/Collaborations"

(Replaced content with "{{Tokyo_Tech}}")
Line 1: Line 1:
 
{{Tokyo_Tech}}
 
{{Tokyo_Tech}}
 +
<html>
 +
<head>
 +
<meta charset="UTF-8" />
 +
    <style type="text/css">
 +
<!--
 +
/********************** All style of this page ************************/
 +
body{
 +
    background-image: url("https://static.igem.org/mediawiki/2016/e/eb/T--Tokyo_Tech--Background.png");
 +
}
 +
#globalWrapper, #content{
 +
    background: transparent;
 +
}
 +
#content{
 +
//    background-image: url("https://static.igem.org/mediawiki/2016/e/eb/T--Tokyo_Tech--Background.png");
 +
    margin: 0 auto;
 +
}
 +
/**********************************************************************/
 +
#main_contents{
 +
    margin: 0 auto;
 +
    width: 90%;
 +
    min-width: 880px;
 +
    max-width: 1100px;
 +
}
 +
.container{
 +
    margin: 5px auto;
 +
    background: #ffffff;
 +
border: 1px solid #583612;
 +
}
 +
#main_contents .container_top h1{
 +
margin-top: 3px;
 +
margin-bottom: 3px;
 +
padding: 0;
 +
padding-top: 10px;
 +
height: 40px;
 +
font-size: 36px;
 +
}
 +
.container_bottom {
 +
margin-bottom 1px;
 +
}
 +
.container_header{
 +
    background: #ffffff;
 +
    text-align: center;
 +
}
 +
.container_header span{
 +
    border-bottom: 2px solid #052d5d;
 +
}
 +
.container_contents{
 +
line-height: 1.5em;
 +
width: 800px;
 +
margin: 0 auto;
 +
padding-bottom: 10px;
 +
}
 +
#main_contents .normal_text{
 +
font-size: 18px;
 +
text-indent: 18px;
 +
text-align: justify;
 +
// padding: 18px;
 +
    font-family: 'Century', serif;
 +
}
 +
#main_contents .normal_text{
 +
font-size: 18px;
 +
text-indent: 18px;
 +
text-align: justify;
 +
// padding: 18px;
 +
margin: 0;
 +
font-family: 'Century', serif;
 +
    color: #0000000;
 +
    line-height: 1.5em;
 +
}
 +
/************************* Show/Hide setting ***************************/
 +
.on{
 +
display: block;
 +
-webkit-transiton: all 0.6s ease;
 +
transition: all 0.6s ease;
 +
}
 +
.off{
 +
display: none;
 +
-webkit-transiton: all 0.6s ease;
 +
transition: all 0.6s ease;
 +
}
 +
 +
/************************* this page setting *****************************/
 +
#kait_results_images img{
 +
width: 200px;
 +
margin-left: 30px;
 +
margin-top: 30px;
 +
}
 +
 +
--></style>
 +
<script src="https://2015.igem.org/common/MathJax-2.5-latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
 +
</head>
 +
<body>
 +
<div id="main_contents">
 +
<div id="page_header" class="container container_top">
 +
<h1 align="center">Collaborations</h1>
 +
</div><!-- /page_header -->
 +
 +
<div id="collaboration_kait" class="container">
 +
<div id="collaboration_kait_header" class="container_header">
 +
<h1><span>1. Collaboration with Kanagawa Institute of Technology</span></h1>
 +
</div><!-- /collaboration_kait_header -->
 +
<div id="collaboration_kait_contents" class="container_contents">
 +
<div id="kait_overview">
 +
<div id="kait_overview_header">
 +
<h2><span>1.1. Overview</span></h2>
 +
</div><!-- /kait_overview_header -->
 +
<div id="kait_overview_contents">
 +
<p class="normal_text">Our team collaborated with iGEM 2016 team KAIT Japan and other teams, as we were asked to help them with the modeling in an early stage. From iGEM 2016 team KAIT Japan we were asked to help them create a mathematical model for their project.</p>
 +
</div><!-- /kait_overview_contents -->
 +
</div><!-- /kait_overview -->
 +
<div id="kait_project">
 +
<div id="kait_project_header">
 +
<h2><span>1.2. Project</span></h2>
 +
</div><!-- /kait_project_header -->
 +
<div id="kait_project_contents">
 +
<p class="normal_text">Team KAIT wanted to increase the production of Bacterial Cellulose (BC) produced by the bacteria <span style="font-style: italic">A</span>. <span style="font-style: italic">xylinum.</span> To do so, we have to take in account the cellulose synthesis pathway.</p>
 +
<a href="https://static.igem.org/mediawiki/2016/e/ee/T--Tokyo_Tech--Collaboration_Kait_1.png"><img src="https://static.igem.org/mediawiki/2016/e/ee/T--Tokyo_Tech--Collaboration_Kait_1.png" height="300px" /></a>
 +
<p class="caption"><span style="font-weight: bold;">Fig. 8-2-1. </span> Cellulose synthesis pathway of an <span style="font-style: italic">Acetobacter</span></p>
 +
<p class="normal_text">Taking this pathway in consideration iGEM 2016 team KAIT Japan planned to increase the amount of cellulose production by diminishing the amount of G6PDH and PGI enzymes by the antisense method.</p>
 +
</div><!-- /kait_project_contents -->
 +
</div><!-- /kait_project -->
 +
<div id="kait_model">
 +
<div id="kait_model_header">
 +
<h1><span>1.3. Mathematical Model</span></h1>
 +
</div><!-- /kait_model_header -->
 +
<div id="kait_model_contents">
 +
<p class="normal_text">Cellulose is produced basically by a series of enzyme reactions, so in order to create a mathematical model for this project, we have to take in account the principal reactions taking place in this production. By doing this we obtain the <a href="javascript:void(0)" onClick="show('equation1');">following equations</a>.</p>
 +
<div id="equation1" class="off">
 +
<p>$$ \displaystyle \frac{d[Glc]}{dt} = - \frac{V_{max_1}[Glc]}{K_{m_1} + [Glc]} $$</p>
 +
<p>$$ \displaystyle \frac{d[Frc]}{dt} = - \frac{V_{max_5}[Frc]}{K_{m_5} + [Frc]} - \frac{V_{max_6}[Frc]}{K_{m_6} + [Frc]} $$</p>
 +
<p>$$ \displaystyle \frac{d[G6P]}{dt} = - \frac{V_{max_1}[Glc]}{K_{m_1} + [Glc]} - \frac{V_{max_2}[G6P]}{K_{m_2} + [G6P]} - \frac{V_{f_3} \frac{[G6P]}{K_{s_3}} - V_{s_3} \frac{[F6P]}{K_{P_3}}}{1 + \frac{[G6P]}{K_{s_3}} + \frac{[F6P]}{K_{P_3}}} - \frac{V_{max_4}[G6P]}{K_{m_4} + [G6P]} $$ </p>
 +
<p>$$ \displaystyle \frac{d[F6P]}{dt} = \frac{V_{max_5} [Frc]}{K_{m_5} + [Frc]} + \frac{V_{max_8} [FDP]}{K_{m_8} + [FDP]} + \frac{V_{f_3} \frac{[G6P]}{K_{s_3} - V_{s_3} \frac{[F6P]}{K_{P_3}}}}{1 + \frac{[G6P]}{K_{s_3}} + \frac{[F6P]}{K_{P_3}}} $$</p>
 +
<p>$$ \displaystyle \frac{[F1P]}{dt} = \frac{V_{max_6}[Frc]}{K_{m_6} + [Frc]} - \frac{V_{max_7} [F1P]}{K_{m_7} + [F1P]} $$</p>
 +
<p>$$ \displaystyle \frac{d[FDP]}{dt} = \frac{V_{max_7} [F1P]}{K_{m_7} + [F1P]} - \frac{V_{max_8} [FDP]}{K_{m_8} + [FDP]} $$</p>
 +
<p>$$ \displaystyle \frac{d[PGA]}{dt} = \frac{V_{max_2} [G6P]}{K_{m_2} + [G6P]} - \frac{V_{max_{11}}[PGA]}{K_{m_{11}} + [PGA]} $$</p>
 +
<p>$$ \displaystyle \frac{d[G1P]}{dt} = \frac{V_{max_4} [G6P]}{K_{m_4} + [G6P]} - \frac{V_{max_9} [G1P]}{K_{m_9} + [G1P]} $$ </p>
 +
<p>$$ \frac{[UDP - Glc]}{dt} = \frac{V_{max_9}[G1P]}{K_{m_9} + [G1P]} - \frac{V_{max_{10}}[UDP-Glc]}{K_{m_{10}} + [UDP-Glc]} $$</p>
 +
<p>$$ \frac{d[Cell]}{dt} = \frac{V_{max_{10}}[UDP-Glc]}{K_{m_{10}} + [UDP - Glc]} $$ </p>
 +
</div><!-- /equation1 -->
 +
<p class="normal_text">Were each equation represents the concentration of each molecule. \( V_{max_n} \) and \( K_{m_n} \) represent the maximal velocity and the Michaelis constant of reaction n respectively. In the case of the concentration of G6P and F6P we have to consider the reversibility of the reaction.</p>
 +
<p class="normal_text">However in this case, since it was considered to only use glucose and not fructose, we can simplify the equations to the <a href="javascript:void(0);" onClick="show('equation2');">following ones</a>.</p>
 +
<div id="equation2" class="off">
 +
<p>$$ \frac{d[Glc]}{dt} = - \frac{V_{max_1} [Glc]}{K_{m_1} + [Glc]} $$</p>
 +
<p>$$ \displaystyle \frac{d[G6P]}{dt} = - \frac{V_{max_1}[Glc]}{K_{m_1} + [Glc]} - \frac{V_{max_2}[G6P]}{K_{m_2} + [G6P]} - \frac{V_{f_3} \frac{[G6P]}{K_{s_3}} - V_{s_3} \frac{[F6P]}{K_{P_3}}}{1 + \frac{[G6P]}{K_{s_3}} + \frac{[F6P]}{K_{P_3}}} - \frac{V_{max_4}[G6P]}{K_{m_4} + [G6P]} $$</p>
 +
<p>$$ \frac{d[F6P]}{dt} = \frac{V_{f_3} \frac{[G6P]}{K_{s_3}}}{ 1 + \frac{[G6P]}{K_{s_3}} + \frac{[F6P]}{K_{P_3}}} $$</p>
 +
<p>$$ \frac{d[PGA]}{dt} = \frac{V_{max_2} [G6P]}{K_{m_2} + [G6P]} $$</p>
 +
<p>$$ \frac{d[G1P]}{dt} = \frac{V_{max_4} [G6P]}{K_{m_4} + [G6P]} - \frac{V_{max_9} [G1P]}{K_{m_9} + [G1P]} $$</p>
 +
<p>$$ \frac{d[UDP- Glc]}{dt} = \frac{V_{max_{9}} [G1P]}{K_{m_{9}} + [G1P]} - \frac{V_{max_{10}} [UDP-Glc]}{K_{m_{10}} + [UDP-Glc]} $$</p>
 +
<p>$$ \frac{d[Cell]}{dt} = \frac{V_{max_{10}} [UDP-Glc]}{K_{m_{10}} + [UDP-Glc]} $$</p>
 +
</div><!-- /equation2 -->
 +
</div><!-- /kait_model_contents -->
 +
</div><!-- /kait_model -->
 +
<div id="kait_antisense_method">
 +
<div id="kait_antisense_method_header">
 +
<h2><span>1.4. Antisense Method</span></h2>
 +
</div><!-- /kait_antisense_method_header -->
 +
<div id="kait_antisense_method_contentes">
 +
<p class="normal_text">The antisense method consists in inhibiting the production of certain proteins by using an antisense RNA that is perfectly complementary to the target nucleotide sequence, thus preventing its transcription. </p>
 +
<p class="normal_text">In this case we are using the antisense method to prevent the production of the enzymes G6PD and PGI so by representing the binding of the antisense mRNA to the nucleotide sequence by a hill equation we get <a href="javascript:void(0);" onClick="show('equation3')">the following equations</a>.</p>
 +
<div id="equation3" class="off">
 +
<p>$$ \frac{d[G6P]}{dt} = \frac{V_{max_1} [Glc]}{K_{m_1} + [Glc]} - \left(1 - \frac{\alpha_1[mRNA_1]^{n_1}}{K_1^{n_1} + [mRNA_1]^{n_1}} \right) * \frac{V_{max_2}[G6P]}{K_{m_2} + [G6P]} \\
 +
- \left(1 - \frac{\alpha_2[mRNA_2]^{n_2}}{K_2^{n_2} + [mRNA_2]^{n_2}} \right) * \frac{V_{f_3} \frac{[G6P]}{K_{s_3}} - V_{s_3} \frac{[F6P]}{K_{P_3}}}{1 + \frac{[G6P]}{K_{s_3}} + \frac{[F6P]}{K_{P_3}}} - \frac{V_{max_4}[G6P]}{K_{m_4} + [G6P]} $$</p>
 +
<p>$$ \frac{d[F6P]}{dt} = \left( 1 - \frac{alpha_2[mRNA_2]^{n_2}}{K_2^{n_2} + [mRNA_2]^{n_2}} \right) * \frac{V_{f_3} \frac{[G6P]}{K_{s_3}} - V_{s_3} \frac{[F6P]}{K_{P_3}}}{1 + \frac{[G6P]}{K_{s_3}} + \frac{[F6P]}{K_{P_3}}} $$</p>
 +
<p>$$ \frac{[PGA]}{dt} = \left(1 - \frac{\alpha_1[mRNA_1]^{n_1}}{K_1^{n_1} + [mRNA_1]^{n_1}} \right) * \frac{V_{max_2}[G6P]}{K_{m_2} + [G6P]} $$</p>
 +
</div><!-- /equation3 -->
 +
<p class="normal_text">Where ɑn and Kn and nn are constants from the hill equation. The concentration of the mRNA depend on the conditions of the experiment.</p>
 +
</div><!-- /kait_antisense_method_contents -->
 +
</div><!-- /kait_antisense_method -->
 +
<div id="kait_results">
 +
<div id="kait_results_header">
 +
<h2><span>1.5. Results</span><h2>
 +
</div><!-- /kait_results_header -->
 +
<div id="kait_results_contents">
 +
<p class="normal_text">Applying this mathematical model we got the following graphs.</p>
 +
<div id="kait_results_images">
 +
<a href="https://static.igem.org/mediawiki/2016/1/10/T--Tokyo_Tech--Collaboration_Kait_2.png"><img src="https://static.igem.org/mediawiki/2016/1/10/T--Tokyo_Tech--Collaboration_Kait_2.png" /></a>(a)
 +
<a href="https://static.igem.org/mediawiki/2016/2/21/T--Tokyo_Tech--Collaboration_Kait_3.png"><img src="https://static.igem.org/mediawiki/2016/2/21/T--Tokyo_Tech--Collaboration_Kait_3.png" /></a>(b)
 +
<a href="https://static.igem.org/mediawiki/2016/0/0c/T--Tokyo_Tech--Collaboration_Kait_4.png"><img src="https://static.igem.org/mediawiki/2016/0/0c/T--Tokyo_Tech--Collaboration_Kait_4.png" /></a>(c)
 +
<a href="https://static.igem.org/mediawiki/2016/f/fa/T--Tokyo_Tech--Collaboration_Kait_5.png"><img src="https://static.igem.org/mediawiki/2016/f/fa/T--Tokyo_Tech--Collaboration_Kait_5.png" /></a>(d)
 +
<a href="https://static.igem.org/mediawiki/2016/a/a6/T--Tokyo_Tech--Collaboration_Kait_6.png"><img src="https://static.igem.org/mediawiki/2016/a/a6/T--Tokyo_Tech--Collaboration_Kait_6.png" /></a>(e)
 +
<p class="caption"><span style="font-weight: bold;">Fig. 8-2-2. </span>
 +
(a) Concentrations without applying the antisense method,
 +
(b) Concentration while inhibiting G6PD enzyme,
 +
(c)  Concentrations inhibiting PGI enzyme,
 +
(d) Concentrations inhibiting both G6PD and PGI enzymes,
 +
(e) Concentrations strongly inhibiting both enzymes
 +
</p>
 +
</div><!-- /kait_results_images -->
 +
<p class="normal_text">We can see that the production of BC increases the more we inhibit the enzymes G6PD and PGI, so we can assume this model is correct. However, we cannot say it is the most appropriate to our case since it has not been corroborated with the experiments. We managed, though, to create the basis for a future more precise model.</p>
 +
</div><!-- /kait_results_contents -->
 +
</div><!-- /kait_results -->
 +
</div><!-- /collaboration_kait_contents -->
 +
</div><!-- /collaboration_kait -->
 +
 +
<!-- Kait up to here -->
 +
 +
<div id="workshop" class="container">
 +
<div id="workshop_header" class="container_header">
 +
<h1><span>2. A workshop of modeling</span></h1>
 +
</div><!-- /workshop_header -->
 +
<div id="workshop_contents" class="container_contents">
 +
<p class="normal_text">On August 16th, we hosted a workshop of dry teams. The participating universities were Gifu University, Tokyo University of Agriculture and Technology, University of Tokyo and Kanazawa Institute of Technology. The iGEM Tokyo Tech team and the iGEM UT-Tokyo team taught modeling methods to the other iGEM teams. We exchanged our ideas, and thereby we gained new knowledge of modeling.</p>
 +
</div><!-- /workshop_contents -->
 +
</div><!-- /workshop -->
 +
 +
<!-- Workshop up to here-->
 +
 +
<div id="american_school" class="container">
 +
<div id="american_school_header" class="container_header">
 +
<h1><span>Helping a New iGEM High School Team</span></h1>
 +
</div><!-- /american_school_header -->
 +
<div id="american_school_contents" class="container_contents">
 +
<p class="normal_text">We visited The American School in Japan on September 14th and gave a modeling lecture. We explained our project’s overview and taught modeling methods. We also talked about what iGEM is because The American School is a new iGEM team. The iGEM Tokyo Tech team had collaborated with many universities so far. This visit enabled us to collaborate with high school.</p>
 +
</div><!-- /american_school_contents -->
 +
</div><!-- /american_school -->
 +
 +
<!-- American school up to here -->
 +
 +
<div id="collaboration_ut" class="container">
 +
<div id="ut_header" class="container_header">
 +
<h1><span>4. Developing an application</span></h1>
 +
</div><!-- /ut_herader -->
 +
<div id="ut_contents" class="container_contents">
 +
</div><!-- /ut_contents -->
 +
</div><!-- /collaboration_ut -->
 +
 +
<!-- UT up to here -->
 +
 +
 +
<div id="may_festeval" class="container container_bottom">
 +
<div id="may_festeval_header" class="container_header">
 +
<h1><span>5. May Festeval</span></h1>
 +
</div><!-- /may_festeval_header -->
 +
<div id="may_festeval_contents" class="container_contents">
 +
<p class="normal_text">The Japanese iGEM teams took part in the school festival at the University of Tokyo. Our team shared ideas and gave each other feedbacks. We introduced iGEM and synthetic biology to the public.</p>
 +
<p class="normal_text">See the Human Practice page for further information.</p>
 +
</div><!-- may_festeval_contents -->
 +
</div><!-- /may_festeval -->
 +
 +
<!-- May festeval up to here -->
 +
 +
 +
<div id="meetup" class="container">
 +
<div id="meetup_header" class="container_header">
 +
<h1><span>6. Meetup</span></h1>
 +
</div><!-- /meetup_header -->
 +
</div><!-- /meetup -->
 +
 +
<!-- meetup up to here -->
 +
 +
 +
 +
</div><!-- /main_contents -->
 +
</body>
 +
</html>

Revision as of 13:05, 13 October 2016

1. Collaboration with Kanagawa Institute of Technology

1.1. Overview

Our team collaborated with iGEM 2016 team KAIT Japan and other teams, as we were asked to help them with the modeling in an early stage. From iGEM 2016 team KAIT Japan we were asked to help them create a mathematical model for their project.

1.2. Project

Team KAIT wanted to increase the production of Bacterial Cellulose (BC) produced by the bacteria A. xylinum. To do so, we have to take in account the cellulose synthesis pathway.

Fig. 8-2-1. Cellulose synthesis pathway of an Acetobacter

Taking this pathway in consideration iGEM 2016 team KAIT Japan planned to increase the amount of cellulose production by diminishing the amount of G6PDH and PGI enzymes by the antisense method.

1.3. Mathematical Model

Cellulose is produced basically by a series of enzyme reactions, so in order to create a mathematical model for this project, we have to take in account the principal reactions taking place in this production. By doing this we obtain the following equations.

$$ \displaystyle \frac{d[Glc]}{dt} = - \frac{V_{max_1}[Glc]}{K_{m_1} + [Glc]} $$

$$ \displaystyle \frac{d[Frc]}{dt} = - \frac{V_{max_5}[Frc]}{K_{m_5} + [Frc]} - \frac{V_{max_6}[Frc]}{K_{m_6} + [Frc]} $$

$$ \displaystyle \frac{d[G6P]}{dt} = - \frac{V_{max_1}[Glc]}{K_{m_1} + [Glc]} - \frac{V_{max_2}[G6P]}{K_{m_2} + [G6P]} - \frac{V_{f_3} \frac{[G6P]}{K_{s_3}} - V_{s_3} \frac{[F6P]}{K_{P_3}}}{1 + \frac{[G6P]}{K_{s_3}} + \frac{[F6P]}{K_{P_3}}} - \frac{V_{max_4}[G6P]}{K_{m_4} + [G6P]} $$

$$ \displaystyle \frac{d[F6P]}{dt} = \frac{V_{max_5} [Frc]}{K_{m_5} + [Frc]} + \frac{V_{max_8} [FDP]}{K_{m_8} + [FDP]} + \frac{V_{f_3} \frac{[G6P]}{K_{s_3} - V_{s_3} \frac{[F6P]}{K_{P_3}}}}{1 + \frac{[G6P]}{K_{s_3}} + \frac{[F6P]}{K_{P_3}}} $$

$$ \displaystyle \frac{[F1P]}{dt} = \frac{V_{max_6}[Frc]}{K_{m_6} + [Frc]} - \frac{V_{max_7} [F1P]}{K_{m_7} + [F1P]} $$

$$ \displaystyle \frac{d[FDP]}{dt} = \frac{V_{max_7} [F1P]}{K_{m_7} + [F1P]} - \frac{V_{max_8} [FDP]}{K_{m_8} + [FDP]} $$

$$ \displaystyle \frac{d[PGA]}{dt} = \frac{V_{max_2} [G6P]}{K_{m_2} + [G6P]} - \frac{V_{max_{11}}[PGA]}{K_{m_{11}} + [PGA]} $$

$$ \displaystyle \frac{d[G1P]}{dt} = \frac{V_{max_4} [G6P]}{K_{m_4} + [G6P]} - \frac{V_{max_9} [G1P]}{K_{m_9} + [G1P]} $$

$$ \frac{[UDP - Glc]}{dt} = \frac{V_{max_9}[G1P]}{K_{m_9} + [G1P]} - \frac{V_{max_{10}}[UDP-Glc]}{K_{m_{10}} + [UDP-Glc]} $$

$$ \frac{d[Cell]}{dt} = \frac{V_{max_{10}}[UDP-Glc]}{K_{m_{10}} + [UDP - Glc]} $$

Were each equation represents the concentration of each molecule. \( V_{max_n} \) and \( K_{m_n} \) represent the maximal velocity and the Michaelis constant of reaction n respectively. In the case of the concentration of G6P and F6P we have to consider the reversibility of the reaction.

However in this case, since it was considered to only use glucose and not fructose, we can simplify the equations to the following ones.

$$ \frac{d[Glc]}{dt} = - \frac{V_{max_1} [Glc]}{K_{m_1} + [Glc]} $$

$$ \displaystyle \frac{d[G6P]}{dt} = - \frac{V_{max_1}[Glc]}{K_{m_1} + [Glc]} - \frac{V_{max_2}[G6P]}{K_{m_2} + [G6P]} - \frac{V_{f_3} \frac{[G6P]}{K_{s_3}} - V_{s_3} \frac{[F6P]}{K_{P_3}}}{1 + \frac{[G6P]}{K_{s_3}} + \frac{[F6P]}{K_{P_3}}} - \frac{V_{max_4}[G6P]}{K_{m_4} + [G6P]} $$

$$ \frac{d[F6P]}{dt} = \frac{V_{f_3} \frac{[G6P]}{K_{s_3}}}{ 1 + \frac{[G6P]}{K_{s_3}} + \frac{[F6P]}{K_{P_3}}} $$

$$ \frac{d[PGA]}{dt} = \frac{V_{max_2} [G6P]}{K_{m_2} + [G6P]} $$

$$ \frac{d[G1P]}{dt} = \frac{V_{max_4} [G6P]}{K_{m_4} + [G6P]} - \frac{V_{max_9} [G1P]}{K_{m_9} + [G1P]} $$

$$ \frac{d[UDP- Glc]}{dt} = \frac{V_{max_{9}} [G1P]}{K_{m_{9}} + [G1P]} - \frac{V_{max_{10}} [UDP-Glc]}{K_{m_{10}} + [UDP-Glc]} $$

$$ \frac{d[Cell]}{dt} = \frac{V_{max_{10}} [UDP-Glc]}{K_{m_{10}} + [UDP-Glc]} $$

1.4. Antisense Method

The antisense method consists in inhibiting the production of certain proteins by using an antisense RNA that is perfectly complementary to the target nucleotide sequence, thus preventing its transcription.

In this case we are using the antisense method to prevent the production of the enzymes G6PD and PGI so by representing the binding of the antisense mRNA to the nucleotide sequence by a hill equation we get the following equations.

$$ \frac{d[G6P]}{dt} = \frac{V_{max_1} [Glc]}{K_{m_1} + [Glc]} - \left(1 - \frac{\alpha_1[mRNA_1]^{n_1}}{K_1^{n_1} + [mRNA_1]^{n_1}} \right) * \frac{V_{max_2}[G6P]}{K_{m_2} + [G6P]} \\ - \left(1 - \frac{\alpha_2[mRNA_2]^{n_2}}{K_2^{n_2} + [mRNA_2]^{n_2}} \right) * \frac{V_{f_3} \frac{[G6P]}{K_{s_3}} - V_{s_3} \frac{[F6P]}{K_{P_3}}}{1 + \frac{[G6P]}{K_{s_3}} + \frac{[F6P]}{K_{P_3}}} - \frac{V_{max_4}[G6P]}{K_{m_4} + [G6P]} $$

$$ \frac{d[F6P]}{dt} = \left( 1 - \frac{alpha_2[mRNA_2]^{n_2}}{K_2^{n_2} + [mRNA_2]^{n_2}} \right) * \frac{V_{f_3} \frac{[G6P]}{K_{s_3}} - V_{s_3} \frac{[F6P]}{K_{P_3}}}{1 + \frac{[G6P]}{K_{s_3}} + \frac{[F6P]}{K_{P_3}}} $$

$$ \frac{[PGA]}{dt} = \left(1 - \frac{\alpha_1[mRNA_1]^{n_1}}{K_1^{n_1} + [mRNA_1]^{n_1}} \right) * \frac{V_{max_2}[G6P]}{K_{m_2} + [G6P]} $$

Where ɑn and Kn and nn are constants from the hill equation. The concentration of the mRNA depend on the conditions of the experiment.

1.5. Results

Applying this mathematical model we got the following graphs.

(a) (b) (c) (d) (e)

Fig. 8-2-2. (a) Concentrations without applying the antisense method, (b) Concentration while inhibiting G6PD enzyme, (c) Concentrations inhibiting PGI enzyme, (d) Concentrations inhibiting both G6PD and PGI enzymes, (e) Concentrations strongly inhibiting both enzymes

We can see that the production of BC increases the more we inhibit the enzymes G6PD and PGI, so we can assume this model is correct. However, we cannot say it is the most appropriate to our case since it has not been corroborated with the experiments. We managed, though, to create the basis for a future more precise model.

2. A workshop of modeling

On August 16th, we hosted a workshop of dry teams. The participating universities were Gifu University, Tokyo University of Agriculture and Technology, University of Tokyo and Kanazawa Institute of Technology. The iGEM Tokyo Tech team and the iGEM UT-Tokyo team taught modeling methods to the other iGEM teams. We exchanged our ideas, and thereby we gained new knowledge of modeling.

Helping a New iGEM High School Team

We visited The American School in Japan on September 14th and gave a modeling lecture. We explained our project’s overview and taught modeling methods. We also talked about what iGEM is because The American School is a new iGEM team. The iGEM Tokyo Tech team had collaborated with many universities so far. This visit enabled us to collaborate with high school.

4. Developing an application

5. May Festeval

The Japanese iGEM teams took part in the school festival at the University of Tokyo. Our team shared ideas and gave each other feedbacks. We introduced iGEM and synthetic biology to the public.

See the Human Practice page for further information.

6. Meetup