Difference between revisions of "Team:TU Delft/Proof"

Line 1: Line 1:
 
{{:Team:TU_Delft/Header}}
 
{{:Team:TU_Delft/Header}}
 
<html>
 
<html>
  <head>
+
    <head>
 
         <meta charset="utf-8">
 
         <meta charset="utf-8">
 
         <title>iGEM TU Delft</title>
 
         <title>iGEM TU Delft</title>
Line 7: Line 7:
 
         <meta name="viewport" content="width=device-width, initial-scale=1">
 
         <meta name="viewport" content="width=device-width, initial-scale=1">
 
     </head>
 
     </head>
<body id="delft">
+
    <body id="delft">
 +
 
  
     
 
 
         <div  class="main-container project">
 
         <div  class="main-container project">
  
Line 27: Line 27:
  
 
                     <h2 class="title-style-2">Maybe some title??</h2>
 
                     <h2 class="title-style-2">Maybe some title??</h2>
                   
+
 
<p>When making biological lenses, the shape of the lens is of crucial importance. <i>E. coli</i> is a rod-shaped organism,  
+
                    <p>When making biological lenses, the shape of the lens is of crucial importance. <i>E. coli</i> is a rod-shaped organism,  
    so it’s not symmetrical along all axes. Shining light on the round parts of <i>E. coli</i> has a different effect
+
                        so it’s not symmetrical along all axes. Shining light on the round parts of <i>E. coli</i> has a different effect
    on the focusing of light than shining light on the long sides, see figure 1 <b>add this figure??</b>. More information on this can be found  
+
                        on the focusing of light than shining light on the long sides, see figure 1 <b>add this figure??</b>. More information on this can be found  
    on the <b><a href="https://2016.igem.org/Team:TU_Delft/Model" target="_blank">modeling</a></b> and  
+
                        on the <b><a href="https://2016.igem.org/Team:TU_Delft/Model" target="_blank">modeling</a></b> and  
    <a href="https://2016.igem.org/Team:TU_Delft/Project#silicatein"><b>project</b></a> pages.
+
                        <a href="https://2016.igem.org/Team:TU_Delft/Project#silicatein"><b>project</b></a> pages.
</p>
+
                    </p>
<p> For some applications, such as the solar cells, this variation in shape
+
                    <p> For some applications, such as the solar cells, this variation in shape
    does not matter that much; here it’s most important that light gets focused  
+
                        does not matter that much; here it’s most important that light gets focused  
    in any way <b>Modify this so it makes sense to do this</b>. However, when we want to use our microlenses in more advanced optical  
+
                        in any way <b>Modify this so it makes sense to do this</b>. However, when we want to use our microlenses in more advanced optical  
    systems, such as microscopes or cameras, we need to make sure that this variation  
+
                        systems, such as microscopes or cameras, we need to make sure that this variation  
    between the different lenses is minimized. Manufacturers of optical systems do not
+
                        between the different lenses is minimized. Manufacturers of optical systems do not
    accept a high aberration between different lenses, so it’s crucial for us to be able
+
                        accept a high aberration between different lenses, so it’s crucial for us to be able
    to control the shape of our lenses. We have decided to engineer <i>E. coli</i> in such
+
                        to control the shape of our lenses. We have decided to engineer <i>E. coli</i> in such
    a way that it becomes spherical. This way we are able to create spherical lenses. Apart  
+
                        a way that it becomes spherical. This way we are able to create spherical lenses. Apart  
    from the fact that it is crucial to be able to control cell shape, round cells offer the  
+
                        from the fact that it is crucial to be able to control cell shape, round cells offer the  
    advantage of being symmetrical along all axes, so the orientation of your lens does not  
+
                        advantage of being symmetrical along all axes, so the orientation of your lens does not  
    matter for the optical properties.
+
                        matter for the optical properties.
</p>
+
                    </p>
<p>To produce round shaped biolenses we need our <i>E. coli</i> to perform two special activities: produce the biolens itself and  
+
                    <p>To produce round shaped biolenses we need our <i>E. coli</i> to perform two special activities: produce the biolens itself and  
    change its shape from rod to round. As it is described in the <a href="https://2016.igem.org/Team:TU_Delft/Project#silicatein"><b>project page</b></a>  
+
                        change its shape from rod to round. As it is described in the <a href="https://2016.igem.org/Team:TU_Delft/Project#silicatein"><b>project page</b></a>  
    in more detail, to be able to obtain biological lenses  we need a coating of polysilicate, biological glass,  
+
                        in more detail, to be able to obtain biological lenses  we need a coating of polysilicate, biological glass,  
    around the cell. This glass will give optical properties for the cell. <i>E. coli</i>  
+
                        around the cell. This glass will give optical properties for the cell. <i>E. coli</i>  
    is intrinsically not able to coat itself in polysilicate. However, upon transformation of the silicatein-α gene,  
+
                        is intrinsically not able to coat itself in polysilicate. However, upon transformation of the silicatein-α gene,  
    originating from sponges, it is possible to coat the bacterium in a layer of polysilicate  
+
                        originating from sponges, it is possible to coat the bacterium in a layer of polysilicate  
    <a href="#references">(Müller et al., 2008; Müller et al. 2003)</a>. Therefore, we are transforming <i>E. coli</i> with
+
                        <a href="#references">(Müller et al., 2008; Müller et al. 2003)</a>. Therefore, we are transforming <i>E. coli</i> with
    silicatein-α. We test the use of  silicatein from two different organisms expressed in three different ways, of which the  
+
                        silicatein-α. We test the use of  silicatein from two different organisms expressed in three different ways, of which the  
    most successful one was the construct consisting of silicatein from <i>Tethya aurantia</i> fused to the membrane protein OmpA  
+
                        most successful one was the construct consisting of silicatein from <i>Tethya aurantia</i> fused to the membrane protein OmpA  
    (Part <b><a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K1890002" target="_blank">K1890002</a></b>)
+
                        (Part <b><a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K1890002" target="_blank">K1890002</a></b>)
    as shown by Rhodamine123 staining and other imaging experiments (see <a href="https://2016.igem.org/Team:TU_Delft/Project#silicatein"><b>project page</b></a>).
+
                        as shown by Rhodamine123 staining and other imaging experiments (see <a href="https://2016.igem.org/Team:TU_Delft/Project#silicatein"><b>project page</b></a>).
</p>
+
                    </p>
<p>In order to create spherical <i>E. coli</i>, we overexpress the <i>BolA</i> gene.  
+
                    <p>In order to create spherical <i>E. coli</i>, we overexpress the <i>BolA</i> gene.  
    <i>BolA</i> is a gene that controls the morphology of <i>E. coli</i> in the stress  
+
                        <i>BolA</i> is a gene that controls the morphology of <i>E. coli</i> in the stress  
    response <a href="#references">(Santos, Freire, Vicente, & Arraiano, 1999)</a>.  
+
                        response <a href="#references">(Santos, Freire, Vicente, & Arraiano, 1999)</a>.  
    By overexpressing this gene, the rod-shaped <i>E. coli</i> cells will become  
+
                        By overexpressing this gene, the rod-shaped <i>E. coli</i> cells will become  
    round <a href="#references">(Aldea, Hernandez-Chico, De La Campa, Kushner, & Vicente, 1988)</a>. We will express this gene both under a  
+
                        round <a href="#references">(Aldea, Hernandez-Chico, De La Campa, Kushner, & Vicente, 1988)</a>. We will express this gene both under a  
    constitutive promoter (Part <b><a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K1890031">K1890031</a></b>), as well as an inducible  
+
                        constitutive promoter (Part <b><a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K1890031">K1890031</a></b>), as well as an inducible  
    promoter (Part <b><a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K1890030">K1890030</a></b>), the latest being our favorite
+
                        promoter (Part <b><a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K1890030">K1890030</a></b>), the latest being our favorite
    due to the better result obtained (see <a href="https://2016.igem.org/Team:TU_Delft/Project#Biolenses"><b>project page</b></a>).
+
                        due to the better result obtained (see <a href="https://2016.igem.org/Team:TU_Delft/Project#Biolenses"><b>project page</b></a>).
    When we express both the <i>BolA</i> gene as well as silicatein, we are able to construct round cells, coated in glass.
+
                        When we express both the <i>BolA</i> gene as well as silicatein, we are able to construct round cells, coated in glass.
</p>
+
                    </p>
  
 
                 </div>
 
                 </div>
 
             </div>
 
             </div>
 
         </div>
 
         </div>
    <!--  Scripts================================================== -->
+
        <span class="anchor" id="references"></span>
 +
        <div class="references container">
 +
            <h4 class="footer-title">References</h4>
 +
            <ol>
 +
                <li>Aldea, M., Hernandez-Chico, C., De La Campa, A., Kushner, S., & Vicente, M. (1988). Identification, cloning, and expression of bolA, an ftsZ-dependent morphogene of Escherichia coli. Journal of bacteriology, 170(11), 5169-5176. </li>
 +
                <li>Müller, W. E. G. (2003). Silicon biomineralization.</li>
 +
                <li>Müller, W. E., Engel, S., Wang, X., Wolf, S. E., Tremel, W., Thakur, N. L., Schröder, H. C. (2008). Bioencapsulation of living bacteria (Escherichia coli) with poly (silicate) after transformation with silicatein-α gene. Biomaterials, 29(7), 771-779. </li>
 +
                <li>Santos, J. M., Freire, P., Vicente, M., & Arraiano, C. M. (1999). The stationary‐phase morphogene bolA from Escherichia coli is induced by stress during early stages of growth. Molecular microbiology, 32(4), 789-798. </li>
 +
 
 +
 
 +
            </ol>
 +
 
 +
        </div>
 +
 
 +
        <!--  Scripts================================================== -->
  
 
         <!-- jQuery -->
 
         <!-- jQuery -->
Line 79: Line 93:
 
         <script type="text/javascript" src="https://2016.igem.org/Template:TU_Delft/BootstrapJS?action=raw&ctype=text/javascript"></script>
 
         <script type="text/javascript" src="https://2016.igem.org/Template:TU_Delft/BootstrapJS?action=raw&ctype=text/javascript"></script>
 
         <script type="text/javascript" async
 
         <script type="text/javascript" async
            src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML">
+
                src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML">
 
         </script>
 
         </script>
 
     </body>
 
     </body>

Revision as of 17:38, 17 October 2016

iGEM TU Delft


Functional proof of concept

Maybe some title??

When making biological lenses, the shape of the lens is of crucial importance. E. coli is a rod-shaped organism, so it’s not symmetrical along all axes. Shining light on the round parts of E. coli has a different effect on the focusing of light than shining light on the long sides, see figure 1 add this figure??. More information on this can be found on the modeling and project pages.

For some applications, such as the solar cells, this variation in shape does not matter that much; here it’s most important that light gets focused in any way Modify this so it makes sense to do this. However, when we want to use our microlenses in more advanced optical systems, such as microscopes or cameras, we need to make sure that this variation between the different lenses is minimized. Manufacturers of optical systems do not accept a high aberration between different lenses, so it’s crucial for us to be able to control the shape of our lenses. We have decided to engineer E. coli in such a way that it becomes spherical. This way we are able to create spherical lenses. Apart from the fact that it is crucial to be able to control cell shape, round cells offer the advantage of being symmetrical along all axes, so the orientation of your lens does not matter for the optical properties.

To produce round shaped biolenses we need our E. coli to perform two special activities: produce the biolens itself and change its shape from rod to round. As it is described in the project page in more detail, to be able to obtain biological lenses we need a coating of polysilicate, biological glass, around the cell. This glass will give optical properties for the cell. E. coli is intrinsically not able to coat itself in polysilicate. However, upon transformation of the silicatein-α gene, originating from sponges, it is possible to coat the bacterium in a layer of polysilicate (Müller et al., 2008; Müller et al. 2003). Therefore, we are transforming E. coli with silicatein-α. We test the use of silicatein from two different organisms expressed in three different ways, of which the most successful one was the construct consisting of silicatein from Tethya aurantia fused to the membrane protein OmpA (Part K1890002) as shown by Rhodamine123 staining and other imaging experiments (see project page).

In order to create spherical E. coli, we overexpress the BolA gene. BolA is a gene that controls the morphology of E. coli in the stress response (Santos, Freire, Vicente, & Arraiano, 1999). By overexpressing this gene, the rod-shaped E. coli cells will become round (Aldea, Hernandez-Chico, De La Campa, Kushner, & Vicente, 1988). We will express this gene both under a constitutive promoter (Part K1890031), as well as an inducible promoter (Part K1890030), the latest being our favorite due to the better result obtained (see project page). When we express both the BolA gene as well as silicatein, we are able to construct round cells, coated in glass.

  1. Aldea, M., Hernandez-Chico, C., De La Campa, A., Kushner, S., & Vicente, M. (1988). Identification, cloning, and expression of bolA, an ftsZ-dependent morphogene of Escherichia coli. Journal of bacteriology, 170(11), 5169-5176.
  2. Müller, W. E. G. (2003). Silicon biomineralization.
  3. Müller, W. E., Engel, S., Wang, X., Wolf, S. E., Tremel, W., Thakur, N. L., Schröder, H. C. (2008). Bioencapsulation of living bacteria (Escherichia coli) with poly (silicate) after transformation with silicatein-α gene. Biomaterials, 29(7), 771-779.
  4. Santos, J. M., Freire, P., Vicente, M., & Arraiano, C. M. (1999). The stationary‐phase morphogene bolA from Escherichia coli is induced by stress during early stages of growth. Molecular microbiology, 32(4), 789-798.