Difference between revisions of "Team:TU Delft/Proof"

Line 23: Line 23:
 
                 <div class="col-md-10 col-md-offset-1 col-sm-12">  
 
                 <div class="col-md-10 col-md-offset-1 col-sm-12">  
  
                     <h2 class="title-style-2">Maybe some title??</h2>
+
                     <h2 class="title-style-2">Producing microlenses with bacteria</h2>
  
 +
                    <p>To produce biolenses we need our <i>E. coli</i> to perform two special activities: produce the a glass layer and
 +
                        change its shape from rod to round. To be able to obtain biological lenses we need a coating of polysilicate, biological glass,
 +
                        around the cell. This glass will give optical properties for the cell. <i>E. coli</i>
 +
                        is intrinsically not able to coat itself in polysilicate. However, upon transformation of the silicatein-α gene,
 +
                        originating from sponges, it is possible to coat the bacterium in a layer of polysilicate
 +
                        <a href="#references">(Müller et al., 2008; Müller et al. 2003)</a>. Therefore, we are transforming <i>E. coli</i> with
 +
                        silicatein-α. We test silicatein from two different organisms expressed in three different ways, of which the
 +
                        most successful one was the construct consisting of silicatein from <i>Tethya aurantia</i> fused to the membrane protein OmpA
 +
                        (Part <b><a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K1890002" target="_blank">K1890002</a></b>)
 +
                        as shown by Rhodamine 123 staining of the polysilicate (Figure 1) and
 +
                        <a href="https://2016.igem.org/Team:TU_Delft/Project#silicatein" target="_blank"><b>other imaging experiments</b></a>).
 +
                    </p>
 +
                    <figure>
 +
                        <img src="https://static.igem.org/mediawiki/2016/8/8c/T--TU_Delft--silicatein92.png" alt="Rhodamine staining" >
 +
                        <figcaption><b>Figure 1,</b> widefield and fluorescence images of OmpA-silicatein with silicic acid and OmpA-silicatein without silicic acid (negative control) at maximum excitation energy. Of the widefield and fluorescence images an overlay was made to show the fraction of fluorescent cells. The negative control causes overexposure of the camera, therefore the fluorescent image only gives one uniform signal. </figcaption>
 +
                    </figure>               
 
                     <p>When making biological lenses, the shape of the lens is of crucial importance. <i>E. coli</i> is a rod-shaped organism,  
 
                     <p>When making biological lenses, the shape of the lens is of crucial importance. <i>E. coli</i> is a rod-shaped organism,  
 
                         so it is not symmetrical along all axes. Shining light on the round parts of <i>E. coli</i> has a different effect
 
                         so it is not symmetrical along all axes. Shining light on the round parts of <i>E. coli</i> has a different effect
                         on the focusing of light than shining light on the long sides (Figure 1).
+
                         on the focusing of light than shining light on the long sides (Figure 2).
 
                         <!-- figure modelling !-->
 
                         <!-- figure modelling !-->
 
                         More information on this can be found  
 
                         More information on this can be found  
Line 38: Line 54:
 
                         cell, and is hard to produce using conventional techniques. Conventional microlenses are usually bigger. Therefore,
 
                         cell, and is hard to produce using conventional techniques. Conventional microlenses are usually bigger. Therefore,
 
                         <strong>our method of producing microlenses has an advantage over the conventional production</strong>, since we
 
                         <strong>our method of producing microlenses has an advantage over the conventional production</strong>, since we
                         are able to produce far smaller lenses. Smaller lenses also means we can put more lenses on a surface, which increases the focusing effect.
+
                         are able to produce far smaller lenses. Smaller lenses also means we can put more lenses on a surface,
                    </p>
+
                        which increases the focusing effect.
                    <p>To produce round shaped biolenses we need our <i>E. coli</i> to perform two special activities: produce the biolens itself and
+
                        change its shape from rod to round. As it is described in the <a href="https://2016.igem.org/Team:TU_Delft/Project#silicatein" target="_blank"><b>project page</b></a>
+
                        in more detail, to be able to obtain biological lenses  we need a coating of polysilicate, biological glass,
+
                        around the cell. This glass will give optical properties for the cell. <i>E. coli</i>
+
                        is intrinsically not able to coat itself in polysilicate. However, upon transformation of the silicatein-α gene,
+
                        originating from sponges, it is possible to coat the bacterium in a layer of polysilicate
+
                        <a href="#references">(Müller et al., 2008; Müller et al. 2003)</a>. Therefore, we are transforming <i>E. coli</i> with
+
                        silicatein-α. We test silicatein from two different organisms expressed in three different ways, of which the
+
                        most successful one was the construct consisting of silicatein from <i>Tethya aurantia</i> fused to the membrane protein OmpA
+
                        (Part <b><a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K1890002" target="_blank">K1890002</a></b>)
+
                        as shown by Rhodamine 123 staining and other imaging experiments (see <a href="https://2016.igem.org/Team:TU_Delft/Project#silicatein" target="_blank"><b>project page</b></a>).
+
 
                     </p>
 
                     </p>
 +
 
                     <p>In order to create spherical <i>E. coli</i>, we overexpress the <i>BolA</i> gene.  
 
                     <p>In order to create spherical <i>E. coli</i>, we overexpress the <i>BolA</i> gene.  
 
                         <i>BolA</i> is a gene that controls the morphology of <i>E. coli</i> in the stress  
 
                         <i>BolA</i> is a gene that controls the morphology of <i>E. coli</i> in the stress  
Line 59: Line 65:
 
                         constitutive promoter (Part <b><a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K1890031" target="_blank">K1890031</a></b>), as well as an inducible  
 
                         constitutive promoter (Part <b><a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K1890031" target="_blank">K1890031</a></b>), as well as an inducible  
 
                         promoter (Part <b><a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K1890030" target="_blank">K1890030</a></b>), the latter being our favorite
 
                         promoter (Part <b><a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K1890030" target="_blank">K1890030</a></b>), the latter being our favorite
                         due to the better result obtained (see <a href="https://2016.igem.org/Team:TU_Delft/Project#Biolenses" target="_blank"><b>project page</b></a>).
+
                         due to the better result obtained (Figure 3).
                        When we express both the <i>BolA</i> gene as well as silicatein, we are able to construct round cells, coated in glass.
+
 
                     </p>
 
                     </p>
 
+
                    <figure>
 +
                        <center><img src="https://static.igem.org/mediawiki/2016/c/c2/T--TU_Delft--BolA_SEM.png">
 +
                            <figcaption>
 +
                                <b>Figure 3</b>: SEM images of <b>(A)</b> <i>E. coli</i> BL21 without the <i>BolA</i> gene, <b>(B)</b> <i>E. coli</i> transformed with the <i>BolA</i> gene.
 +
                            </figcaption></center>
 +
                    </figure>
 +
                    <p>
 +
                        When we express both the <i>BolA</i> gene as well as silicatein, we are able to construct round cells, coated in glass (Figure 4).
 +
                    </p>
 +
                    <figure><center>
 +
                            <img src="https://static.igem.org/mediawiki/2016/c/c2/T--TU_Delft--BolA_SEM.png" alt="BolA">
 +
                            <figcaption><b> Figure 3: </b> SEM images of <b>(A)</b> <i>E. coli</i> BL21 without the <i>BolA</i> gene, <b>(B)</b> <i>E. coli</i> transformed with the <i>BolA</i> gene. </figcaption></center>
 +
                    </figure>                 
 
                 </div>
 
                 </div>
 
             </div>
 
             </div>

Revision as of 15:51, 18 October 2016

iGEM TU Delft


Functional proof of concept

Producing microlenses with bacteria

To produce biolenses we need our E. coli to perform two special activities: produce the a glass layer and change its shape from rod to round. To be able to obtain biological lenses we need a coating of polysilicate, biological glass, around the cell. This glass will give optical properties for the cell. E. coli is intrinsically not able to coat itself in polysilicate. However, upon transformation of the silicatein-α gene, originating from sponges, it is possible to coat the bacterium in a layer of polysilicate (Müller et al., 2008; Müller et al. 2003). Therefore, we are transforming E. coli with silicatein-α. We test silicatein from two different organisms expressed in three different ways, of which the most successful one was the construct consisting of silicatein from Tethya aurantia fused to the membrane protein OmpA (Part K1890002) as shown by Rhodamine 123 staining of the polysilicate (Figure 1) and other imaging experiments).

Rhodamine staining
Figure 1, widefield and fluorescence images of OmpA-silicatein with silicic acid and OmpA-silicatein without silicic acid (negative control) at maximum excitation energy. Of the widefield and fluorescence images an overlay was made to show the fraction of fluorescent cells. The negative control causes overexposure of the camera, therefore the fluorescent image only gives one uniform signal.

When making biological lenses, the shape of the lens is of crucial importance. E. coli is a rod-shaped organism, so it is not symmetrical along all axes. Shining light on the round parts of E. coli has a different effect on the focusing of light than shining light on the long sides (Figure 2). More information on this can be found on the modeling and project pages.

Biolenses with a spherical phenotype have an advantage over Biolenses with the rod-shaped E. coli phenotype, as for the round lenses, the orientation of the lens does not matter. The spherical cells we produced had an increased diameter compared to wildtype E. coli. The diameter of 1 µm that we observed matches the size of a photovoltaic cell, and is hard to produce using conventional techniques. Conventional microlenses are usually bigger. Therefore, our method of producing microlenses has an advantage over the conventional production, since we are able to produce far smaller lenses. Smaller lenses also means we can put more lenses on a surface, which increases the focusing effect.

In order to create spherical E. coli, we overexpress the BolA gene. BolA is a gene that controls the morphology of E. coli in the stress response (Santos et al. 1999). By overexpressing this gene, the rod-shaped E. coli cells will become round (Aldea et al., 1988). We express this gene both under a constitutive promoter (Part K1890031), as well as an inducible promoter (Part K1890030), the latter being our favorite due to the better result obtained (Figure 3).

Figure 3: SEM images of (A) E. coli BL21 without the BolA gene, (B) E. coli transformed with the BolA gene.

When we express both the BolA gene as well as silicatein, we are able to construct round cells, coated in glass (Figure 4).

BolA
Figure 3: SEM images of (A) E. coli BL21 without the BolA gene, (B) E. coli transformed with the BolA gene.
  1. Aldea, M., Hernandez-Chico, C., De La Campa, A., Kushner, S., & Vicente, M. (1988). Identification, cloning, and expression of bolA, an ftsZ-dependent morphogene of Escherichia coli. Journal of bacteriology, 170(11), 5169-5176.
  2. Müller, W. E. G. (2003). Silicon biomineralization.
  3. Müller, W. E., Engel, S., Wang, X., Wolf, S. E., Tremel, W., Thakur, N. L., Schröder, H. C. (2008). Bioencapsulation of living bacteria (Escherichia coli) with poly (silicate) after transformation with silicatein-α gene. Biomaterials, 29(7), 771-779.
  4. Santos, J. M., Freire, P., Vicente, M., & Arraiano, C. M. (1999). The stationary‐phase morphogene bolA from Escherichia coli is induced by stress during early stages of growth. Molecular microbiology, 32(4), 789-798.