Difference between revisions of "Team:Hong Kong HKU/Description"

m (Minor Fixes)
m
 
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
<html>
 
<html>
 +
<meta http-equiv="X-UA-Compatible" content="IE=edge">
 +
<meta name="viewport" content="width=device-width, initial-scale=1.0">
 
<style>
 
<style>
 
#sideMenu
 
#sideMenu
Line 26: Line 28:
 
h1 {font-size:72px;} h2 {font-size:48px;} h3 {font-size:36px;}
 
h1 {font-size:72px;} h2 {font-size:48px;} h3 {font-size:36px;}
 
h4 {font-size:32px;} h5 {font-size:28px;} h6 {font-size:24px;}
 
h4 {font-size:32px;} h5 {font-size:28px;} h6 {font-size:24px;}
 +
.panel-body{background-color:rgba(255, 255, 255, 0) !important;}
 +
.panel-heading{background-color:rgba(255, 255, 255, 0.7)  !important;}
 +
.panel-group{background-color:rgba(255, 255, 255, 0)  !important;}
 +
.panel-transparent{background-color:rgba(255, 255, 255, 0) !important;}
 +
.nav-pills>li.active>a{background-color:#93d66b !important;}
 +
.nav-pills>li>a:hover{background-color:#b2dd75 !important; color:#FFFFFF!important;}
 +
.nav-pills>li.active>a:hover{background-color:#93d66b !important;}
 
</style>
 
</style>
 +
<link href="css/bootstrap.css" rel="stylesheet" type="text/css">
 
<head>
 
<head>
 
<meta charset="utf-8">
 
<meta charset="utf-8">
Line 33: Line 43:
 
<link href="https://2016.igem.org/Team:Hong_Kong_HKU/css/default?action=raw&ctype=text/css" type="text/css" rel="stylesheet">
 
<link href="https://2016.igem.org/Team:Hong_Kong_HKU/css/default?action=raw&ctype=text/css" type="text/css" rel="stylesheet">
 
<link href="https://2016.igem.org/Team:Hong_Kong_HKU/css/custom?action=raw&ctype=text/css" type="text/css" rel="stylesheet">
 
<link href="https://2016.igem.org/Team:Hong_Kong_HKU/css/custom?action=raw&ctype=text/css" type="text/css" rel="stylesheet">
<link href="https://2016.igem.org/Team:Hong_Kong_HKU/css/logo?action=raw&ctype=text/css" type="text/css" rel="stylesheet">
 
 
</head>
 
</head>
 
</html>
 
</html>
Line 40: Line 49:
 
<body>
 
<body>
 
<div class="container" align="center">
 
<div class="container" align="center">
<h3>Main Page & Project description</h3>
+
    <h2>Project</h2>
<ul class="nav nav-pills">
+
    <ul class="nav nav-pills">
  <li class="active"><a data-toggle="pill" href="#inspiration">Inspiration</a></li>
+
      <li class="active dropdown">
  <li><a data-toggle="pill" href="#objectives">Objectives</a></li>
+
          <a class="dropdown-toggle" data-toggle="dropdown" href="#">Description<span class="caret"></span></a>
  <li><a data-toggle="pill" href="#currentprogress">Current progress</a></li>
+
            <ul class="dropdown-menu">
  <li><a data-toggle="pill" href="#significances">Significances</a></li>
+
              <li><a data-toggle="collapse" data-parent="#DescriptionContent" href="#Inspiration">Inspiration</a></li>
</ul>
+
              <li><a data-toggle="collapse" data-parent="#DescriptionContent" href="#Objectives">Objectives</a></li>
 
+
              <li><a data-toggle="collapse" data-parent="#DescriptionContent" href="#Progress">Progress</a></li>
<div class="tab-content">
+
              <li><a data-toggle="collapse" data-parent="#DescriptionContent" href="#Sigificances">Sigificances</a></li>  
  <div id="inspiration" class="tab-pane fade in active">
+
            </ul>
    <h3>Inspiration</h3>
+
      </li>
    <hr>
+
      <li><a href="https://2016.igem.org/Team:Hong_Kong_HKU/Design">Design</a></li>
<h4>Early diagnosis of cancer</h4>
+
    </ul>
<p class="text-justify"><font size="3"> Cancer has always been a devastating disease. In 2012, there were 14.1 million new cancer cases worldwide.<sup>[1]</sup> Early diagnosis of cancer may help to reduce the mortality rate and extend the life expectancy of patients. For instance, in the U. K., nearly 90% of patients diagnosed with stage I lung cancer lived for more than a year while only 19% of patients diagnosed at stage IV do so.<sup>[2]</sup> Early diagnosis of cancer is also believed to be vital for successful treatment and recovery.
+
    <div class="tab-content">
  <br>
+
    <h3>Description</h3>
Significant gene mutations might indicate the possibility of development of cancers. Although recent research has diagnosed cancers by analyzing individual genetic mutation profiles<sup>[3],[4]</sup>, such diagnostic method takes up considerable amount of time to obtain accurate results. As conventional diagnostic methods involve complicated procedures, DNA nanostructures have been introduced to detect cancer biomarkers to facilitate simple diagnosis. </font></p>
+
        <p class="text-justify" align="left"><font size="3">
    <h4>DNA nanostructures and miRNAs as biomarkers</h4>
+
        This summer, we focuses on the intriguing world of diagnostic probes.
    <p class="text-justify"><font size="3">DNA has emerged as a promising material that allows researchers to construct novel designs as its structure could be predicted easily and accurately.<sup>[5]</sup> Examples of DNA nanostructures include nano-tweezers to detect norovirus and a DNA ‘Nano-Claw’ to detect membrane markers of cancer cells.<sup>[6],[7]</sup><br>
+
        We spent approximately 2 weeks to finalize our designs and we finally came up with an elegant tetrahedral design.
      DNA Boolean logic gates have been constructed to produce signals in the presence of multiple targets, such as OR-gate and AND-gate DNA tetrahedra that generate fluorescence resonance energy transfer (FRET) signal when multiple inputs hybridize with the probe.<sup>[8]</sup>
+
        Our ultimate goal is to enable our functional DNA nanostructure to be synthesized and self-assembled in E. coli.
      As for the targets to be detected, different microRNAs (miRNAs) have been identified to be associated with cancers. For example, miR-15b-5p, miR-338-5p, and miR-764 found in plasma are potential biomarkers for detecting hepatocellular carcinoma cancer (HCC), a common type of liver cancer.<sup>[9]</sup> It has already been reported that it is promising to use these biomarkers - miRNAs to detect cancers.<sup>[10]</sup></font><br><br>
+
        They will detect specific biomarkers expressed in the diseased cells.<br>
      <span class="label label-info">References</span><br><br></p>
+
        We are presenting our brainstorming of ideas and linking them to the key elements of the iGEM competition.
<p><font size="2">
+
        Click to explore and enjoy.
1. American Cancer Society. (2015). Global Cancer Facts & Figures. Retrieved from http://www.cancer.org/acs/groups/content/@research/documents/document/acspc-044738.pdf
+
      </font></p>
<br>
+
      <div id="Description" class="tab-pane fade in active">
2.Public Health England. (2014). National Cancer Intelligence Network Cancer survival in England by stage. Retrieved from http://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/lung-cancer/survival#ref-3
+
        <div class="panel-group" id="DescriptionContent" role="tablist" aria-multiselectable="true">
<br>
+
          <div class="panel panel-transparent">
3.Pereira, B., Chin, S., Rueda, O. M., Vollan, H. M., Provenzano, E., Bardwell, H. A., Pugh, M., et al. (2016). The somatic mutation profiles of 2500 primary breast cancers refine their genomic landscapes. Nature Communications
+
            <div class="panel-heading" role="tab">
<br>
+
              <h4 class="panel-title"><a data-toggle="collapse" data-parent="#DescriptionContent" href="#Inspiration"><h3>Inspiration</h3></a></h4>
4.Pereira, B., Chin, S. F., Rueda, O. M., Vollan, H. K. M., Provenzano, E., Bardwell, H. A., ... & Tsui, D. W. (2016). The somatic mutation profiles of 2,433 breast cancers refines their genomic and transcriptomic landscapes. Nature communications, 7.
+
            </div>
<br>
+
            <div id="Inspiration" class="panel-collapse collapse in">
5.Chen, Y. J., Groves, B., Muscat, R. A., & Seelig, G. (2015). DNA nanotechnology from the test tube to the cell. Nature nanotechnology, 10(9), 748-760.
+
              <div class="panel-body">
<br>
+
              <h4>Early diagnosis of cancer</h4><br>
6.Nakatsuka, K., Shigeto, H., Kuroda, A., & Funabashi, H. (2015). A split G-quadruplex-based DNA nano-tweezers structure as a signal-transducing molecule for the homogeneous detection of specific nucleic acids. Biosensors and Bioelectronics, 74, 222-226.
+
              <p class="text-justify" align="left"><font size="3">
<br>
+
              Cancer has always been a devastating disease. In 2012, there were 14.1 million new cancer cases worldwide.<sup>[1]</sup>  
7.You, M., Peng, L., Shao, N., Zhang, L., Qiu, L., Cui, C., & Tan, W. (2014). DNA “nano-claw”: logic-based autonomous cancer targeting and therapy. Journal of the American Chemical Society, 136(4), 1256-1259.
+
              Early diagnosis of cancer may help to reduce the mortality rate and extend the life expectancy of patients.  
<br>
+
              For instance, in the U. K., nearly 90% of patients diagnosed with stage I lung cancer lived for more than a year while only 19% of patients diagnosed at stage IV do so.<sup>[2]</sup>  
8.Pei, H., Liang, L., Yao, G., Li, J., Huang, Q., & Fan, C. (2012). Reconfigurable Three‐Dimensional DNA Nanostructures for the Construction of Intracellular Logic Sensors. Angewandte Chemie, 124(36), 9154-9158.
+
              Early diagnosis of cancer is also believed to be vital for successful treatment and recovery.<br>
<br>
+
              Significant gene mutations might indicate the possibility of development of cancers. Although recent research has diagnosed cancers by analyzing individual genetic mutation profiles<sup>[3],[4]</sup>,  
9.Chen, Y., Chen, J., Liu, Y., Li, S., & Huang, P. (2015). Plasma miR-15b-5p, miR-338-5p, and miR-764 as Biomarkers for Hepatocellular Carcinoma. Medical science monitor: international medical journal of experimental and clinical research, 21, 1864.
+
              such diagnostic method takes up considerable amount of time to obtain accurate results. As conventional diagnostic methods involve complicated procedures,  
<br>
+
              DNA nanostructures have been introduced to detect cancer biomarkers to facilitate simple diagnosis.</font></p>
10.Montani, F., & Bianchi, F. (2016). Circulating Cancer Biomarkers: The Macro-revolution of the Micro-RNA. EBioMedicine, 5, 4-6.</font></p>
+
              <h4>DNA nanostructures and miRNAs as biomarkers</h4>
<a href="https://2016.igem.org/Team:Hong_Kong_HKU/Demonstrate" target="_blank"><button type="button" class="btn btn-info center-block" align="center">Check out our demonstration here</button></a>
+
              <p class="text-justify" align="left"><font size="3">DNA has emerged as a promising material that allows researchers to construct novel designs as its structure could be predicted easily and accurately.<sup>[5]</sup>  
  </div>
+
              Examples of DNA nanostructures include nano-tweezers to detect norovirus and a DNA ‘Nano-Claw’ to detect membrane markers of cancer cells.<sup>[6],[7]</sup><br>
  <div id="objectives" class="tab-pane fade">
+
              DNA Boolean logic gates have been constructed to produce signals in the presence of multiple targets, such as OR-gate and AND-gate DNA tetrahedra that generate fluorescence resonance energy transfer (FRET) signal when multiple inputs hybridize with the probe.<sup>[8]</sup>
    <h3>Objectives</h3>
+
              As for the targets to be detected, different microRNAs (miRNAs) have been identified to be associated with cancers. For example, miR-15b-5p, miR-338-5p, and miR-764 found in plasma are potential biomarkers for detecting hepatocellular carcinoma cancer (HCC),  
    <hr>
+
              a common type of liver cancer.<sup>[9]</sup> It has already been reported that it is promising to use these biomarkers - miRNAs to detect cancers.<sup>[10]</sup>
    <h4><i>In vivo</i> synthesis of functional DNA nanostructure</h4>
+
              </font><br><br>
    <p class="text-justify"><font size="3">Our aim is to design a novel DNA nanostructure that can detect multiple miRNA targets simultaneously. We hope that our design can discriminate a single base mutation of the target miRNAs. Hence, it can be highly specific to our targets and avoid false positives. Our goal is clear - we aim to design a tool which can possibly detect a combination of biomarkers and enhance the sensitivity of detecting a particular type of cancer.<br>
+
              <span class="label label-info" align="left">References</span><br><br>
Recently, <i>in vitro</i> applications of DNA nanostructure have already achieved point-of-care (POC) diagnosis<sup>[11]</sup>. Therefore, we hope to move from <i>in vitro</i> to <i>in vivo</i> by developing a self-assembled DNA nanostructure that can potentially target miRNAs <i>in vivo</i>. Detecting serum miRNA can be challenging because of the low serum miRNA level, so methods such as quantitative polymerase chain reaction are used to amplify the target miRNAs before detecting them.<sup>[12]</sup> We hope that our DNA nanostructure, which is synthesized and assembled <i>in vivo</i>, can potentially eliminate the need of target amplification. In addition, our design has an advantage over the current designs of molecular beacon. Molecular beacon makes use of fluorophores and quenchers<sup>[13]</sup>, which cannot be synthesized <i>in vivo</i>. Our design does not require the use of fluorophore and quencher and thus can work well inside cells. In addition, our DNA nanostructure can be produced at a lower cost as fluorophore and quencher are not used.</font> <br></p>
+
              <font size="2">
<a href="https://static.igem.org/mediawiki/2016/e/e5/HKU_ProjectDescription_Mindmap1.jpg" target="_blank"><img src="https://static.igem.org/mediawiki/2016/e/e5/HKU_ProjectDescription_Mindmap1.jpg" alt="Placeholder image" class="img-responsive center-block"></a>
+
              1. American Cancer Society. (2015). Global Cancer Facts & Figures. Retrieved from http://www.cancer.org/acs/groups/content/@research/documents/document/acspc-044738.pdf
<br>
+
              <br>2.Public Health England. (2014). National Cancer Intelligence Network Cancer survival in England by stage. Retrieved from http://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/lung-cancer/survival#ref-3
<p><span class="label label-info">References</span><br><br></p>
+
              <br>3.Pereira, B., Chin, S., Rueda, O. M., Vollan, H. M., Provenzano, E., Bardwell, H. A., Pugh, M., et al. (2016). The somatic mutation profiles of 2500 primary breast cancers refine their genomic landscapes. Nature Communications
<p><font size="2">
+
              <br>4.Pereira, B., Chin, S. F., Rueda, O. M., Vollan, H. K. M., Provenzano, E., Bardwell, H. A., ... & Tsui, D. W. (2016). The somatic mutation profiles of 2,433 breast cancers refines their genomic and transcriptomic landscapes. Nature communications, 7.
11. Hartman, Mark R., et al.(2013) . "Point-of-care nucleic acid detection using nanotechnology." Nanoscale 5.21 (2013): 10141-10154.
+
              <br>5.Chen, Y. J., Groves, B., Muscat, R. A., & Seelig, G. (2015). DNA nanotechnology from the test tube to the cell. Nature nanotechnology, 10(9), 748-760.
<br>
+
              <br>6.Nakatsuka, K., Shigeto, H., Kuroda, A., & Funabashi, H. (2015). A split G-quadruplex-based DNA nano-tweezers structure as a signal-transducing molecule for the homogeneous detection of specific nucleic acids. Biosensors and Bioelectronics, 74, 222-226.
12. Wang. W.T., Chen.Y.Q. (2014). "Circulating miRNAs in cancer: from detection to therapy." Journal of Hematology & Oncology. (2014): Vol.7. 86.
+
              <br>7.You, M., Peng, L., Shao, N., Zhang, L., Qiu, L., Cui, C., & Tan, W. (2014). DNA “nano-claw”: logic-based autonomous cancer targeting and therapy. Journal of the American Chemical Society, 136(4), 1256-1259.
<br>
+
              <br>8.Pei, H., Liang, L., Yao, G., Li, J., Huang, Q., & Fan, C. (2012). Reconfigurable Three‐Dimensional DNA Nanostructures for the Construction of Intracellular Logic Sensors. Angewandte Chemie, 124(36), 9154-9158.
13. TSOURKAS, Andrew, et al. (2003). Hybridization kinetics and thermodynamics of molecular beacons. Nucleic acids research, 2003, 31.4: 1319-1330.
+
              <br>9.Chen, Y., Chen, J., Liu, Y., Li, S., & Huang, P. (2015). Plasma miR-15b-5p, miR-338-5p, and miR-764 as Biomarkers for Hepatocellular Carcinoma. Medical science monitor: international medical journal of experimental and clinical research, 21, 1864.
<br>
+
              <br>10.Montani, F., & Bianchi, F. (2016). Circulating Cancer Biomarkers: The Macro-revolution of the Micro-RNA. EBioMedicine, 5, 4-6.</font></p>
</font></p>
+
              <a href="https://2016.igem.org/Team:Hong_Kong_HKU/Demonstrate" target="_blank"><br>
<a href="https://2016.igem.org/Team:Hong_Kong_HKU/Design" target="_blank"><button type="button" class="btn btn-info center-block" align="center">Check out our design here</button></a>
+
              <button type="button" class="btn btn-info center-block" align="center">Check out our demonstration here</button></a><br>
  </div>
+
              </div>
  <div id="currentprogress" class="tab-pane fade">
+
            </div>
    <h3>Current progress</h3>
+
          </div>
    <hr>
+
          <div class="panel panel-transparent">
    <p class="text-justify"><font size="3">Our design is a 3-dimensional structure that can be self-assembled from oligonucleotides. Our aim is to construct a nanostructure that is able to detect multiple miRNA biomarkers such that it can reach a higher accuracy for diagnosis. For the selection of biomarkers, we are looking for a combination of miRNAs that are specific to a certain type of disease including cancers.
+
            <div class="panel-heading">
    At current stage, we are testing different designs <i>in vitro</i> to see if they can produce desired signals. After proving our designs can work <i>in vitro</i>, we will attempt to test them <i>in vivo</i>. Finally, we will design a mechanism such that E. coli can synthesize the required oligonucleotides to form the specified nanostructure.</font><br></p>
+
              <h4 class="panel-title"><a data-toggle="collapse" data-parent="#DescriptionContent" href="#Objectives"><h3>Objectives</h3></a></h4>
<a href="https://static.igem.org/mediawiki/2016/0/0e/HKU_ProjectDescription_Mindmap2.jpg" target="_blank"><img class="img-responsive center-block" src="https://static.igem.org/mediawiki/2016/0/0e/HKU_ProjectDescription_Mindmap2.jpg" alt="Placeholder image"></a>
+
            </div>
<a href="https://2016.igem.org/Team:Hong_Kong_HKU/Notebook" target="_blank"><button type="button" class="btn btn-info center-block" align="center">Check out our notebook here</button></a>
+
            <div id="Objectives" class="panel-collapse collapse">
  </div>
+
              <div class="panel-body">
    <div id="significances" class="tab-pane fade">
+
              <h4><i>In vivo</i> synthesis of functional DNA nanostructure</h4><br>
    <h3>Sigificances</h3>
+
                <p class="text-justify" align="left"><font size="3">Our aim is to design a novel DNA nanostructure that can detect multiple miRNA targets simultaneously.  
    <hr>
+
                We hope that our design can discriminate a single base mutation of the target miRNAs. Hence, it can be highly specific to our targets and avoid false positives.  
    <h4>A leap forward - <i>in vivo</i> synthesis of 3D functional DNA nanostructures</h4>
+
                Our goal is clear - we aim to design a tool which can possibly detect a combination of biomarkers and enhance the sensitivity of detecting a particular type of cancer.<br>
    <p class="text-justify"><font size="3">In the past decade, functional DNA nanostructures have been used in similar <i>in vitro</i> approaches to detect various cancer biomarkers.<sup>[14],[15]</sup>It is noted that most of those designs were applied <i>in vitro</i>. Recently, 1D and 2D DNA structures were successfully expressed and assembled <i>in vivo</i>,<sup>[16]</sup> while several novel 3D DNA structures were synthesized to produce signals <i>in vivo</i>.<sup>[17],[18]</sup> Given these advancements, our ultimate goal is to enable our functional DNA nanostructure to be synthesized and self-assembled in E. coli, that can function inside the disease cells. This, if successful and with further refinement, could be a great replacement to colour coded surgery in the surgical field.<sup>[19]</sup><br>
+
                Recently, <i>in vitro</i> applications of DNA nanostructure have already achieved point-of-care (POC) diagnosis<sup>[11]</sup>.  
Last but not least, the cost and quality of production, efficiency and accuracy of our intracellularly-synthesized 3D structure will be compared to current diagnostic methods.</font> </p>
+
                Therefore, we hope to move from <i>in vitro</i> to <i>in vivo</i> by developing a self-assembled DNA nanostructure that can potentially target miRNAs <i>in vivo</i>.  
<br>
+
                Detecting serum miRNA can be challenging because of the low serum miRNA level, so methods such as quantitative polymerase chain reaction are used to amplify the target miRNAs before detecting them.<sup>[12]</sup>  
<p><span class="label label-info">References</span><br><br></p>
+
                We hope that our DNA nanostructure, which is synthesized and assembled <i>in vivo</i>, can potentially eliminate the need of target amplification.  
<p><font size="2">
+
                In addition, our design has an advantage over the current designs of molecular beacon. Molecular beacon makes use of fluorophores and quenchers<sup>[13]</sup>, which cannot be synthesized <i>in vivo</i>.  
14. Miao, P., Wang, B., Chen, X., Li, X., & Tang, Y. (2015). Tetrahedral DNA nanostructure-based microRNA biosensor coupled with catalytic recycling of the analyte. ACS applied materials & interfaces, 7(11), 6238-6243.
+
                Our design does not require the use of fluorophore and quencher and thus can work well inside cells. In addition, our DNA nanostructure can be produced at a lower cost as fluorophore and quencher are not used.
<br>
+
                </font><br>
15. Li W. et. al. (2015). Highly selective and sensitive detection of miRNA based on toehold-mediated strand displacement reaction and DNA tetrahedron substrate. Biosensors and Bioelectronics. 71, 401-406.
+
                <a href="https://static.igem.org/mediawiki/2016/e/e5/HKU_ProjectDescription_Mindmap1.jpg" target="_blank">
<br>
+
                <img src="https://static.igem.org/mediawiki/2016/e/e5/HKU_ProjectDescription_Mindmap1.jpg" alt="Placeholder image" class="img-responsive center-block"></a><br>
16. Elbaz, J., Yin, P., & Voigt, C. A. (2016). Genetic encoding of DNA nanostructures and their self-assembly in living bacteria. Nature communications, 7.
+
                <br>
<br>
+
                <span class="label label-info" align="left">References</span><br><br>
17. Kim K. et. al. (2013). Drug delivery by self-assembled DNA tetrahedron for overcoming drug resistance in breast cancer cells. Chem. Commun. 49, 2010-2012.
+
                <font size="2">
<br>
+
                11. Hartman, Mark R., et al.(2013) . "Point-of-care nucleic acid detection using nanotechnology." Nanoscale 5.21 (2013): 10141-10154.
18. Kim K. et. al. (2013). Sentinel lymph node imaging by a fluorescently labeled DNA tetrahedron. Biomaterials. 34, 5226-5235.
+
                <br>12. Wang. W.T., Chen.Y.Q. (2014). "Circulating miRNAs in cancer: from detection to therapy." Journal of Hematology & Oncology. (2014): Vol.7. 86.
<br>
+
                <br>13. TSOURKAS, Andrew, et al. (2003). Hybridization kinetics and thermodynamics of molecular beacons. Nucleic acids research, 2003, 31.4: 1319-1330.
19. Nguyen, Q. T., & Tsien, R. Y. (2013). Fluorescence-guided surgery with live molecular navigation [mdash] a new cutting edge. Nature reviews cancer, 13(9), 653-662.
+
                </font><br></p>
<br>
+
                <a href="https://2016.igem.org/Team:Hong_Kong_HKU/Design" target="_blank">
</font></p>
+
                <button type="button" class="btn btn-info center-block" align="center">Check out our design here</button></a><br>
    <a href="https://2016.igem.org/Team:Hong_Kong_HKU/Proof" target="_blank"><button type="button" class="btn btn-info center-block" align="center">Check out proof of concept here</button></a>
+
              </div>
 +
            </div>
 +
          </div>
 +
          <div class="panel panel-transparent">
 +
            <div class="panel-heading">
 +
              <h4 class="panel-title"><a data-toggle="collapse" data-parent="#DescriptionContent" href="#Progress"><h3>Progress</h3></a></h4>
 +
            </div>
 +
            <div id="Progress" class="panel-collapse collapse">
 +
              <div class="panel-body">
 +
                <p class="text-justify" align="left"><font size="3">Our design is a 3-dimensional structure that can be self-assembled from oligonucleotides.  
 +
                Our aim is to construct a nanostructure that is able to detect multiple miRNA biomarkers such that it can reach a higher accuracy for diagnosis.  
 +
                For the selection of biomarkers, we are looking for a combination of miRNAs that are specific to a certain type of disease including cancers.
 +
                At current stage, we are testing different designs <i>in vitro</i> to see if they can produce desired signals. After proving our designs can work <i>in vitro</i>,  
 +
                we will attempt to test them <i>in vivo</i>. Finally, we will design a mechanism such that E. coli can synthesize the required oligonucleotides to form the specified nanostructure.
 +
                <br></font></p>
 +
                <a href="https://static.igem.org/mediawiki/2016/0/0e/HKU_ProjectDescription_Mindmap2.jpg" target="_blank">
 +
                <img class="img-responsive center-block" src="https://static.igem.org/mediawiki/2016/0/0e/HKU_ProjectDescription_Mindmap2.jpg" alt="Placeholder image"></a><br>
 +
                <a href="https://2016.igem.org/Team:Hong_Kong_HKU/Notebook" target="_blank">
 +
                <button type="button" class="btn btn-info center-block" align="center">Check out our notebook here</button></a><br>
 +
              </div>
 +
            </div>
 +
          </div>
 +
          <div class="panel panel-transparent">
 +
            <div class="panel-heading">
 +
              <h4 class="panel-title"><a data-toggle="collapse" data-parent="#DescriptionContent" href="#Sigificances"><h3>Sigificances</h3></a></h4>
 +
            </div>
 +
            <div id="Sigificances" class="panel-collapse collapse">
 +
              <div class="panel-body">
 +
            <h4>A leap forward - <i>in vivo</i> synthesis of 3D functional DNA nanostructures</h4>
 +
                <p class="text-justify" align="left"><font size="3">In the past decade, functional DNA nanostructures have been used in similar <i>in vitro</i> approaches to detect various cancer biomarkers.<sup>[14],[15]</sup>  
 +
                It is noted that most of those designs were applied <i>in vitro</i>. Recently, 1D and 2D DNA structures were successfully expressed and assembled <i>in vivo</i><sup>[16]</sup>,
 +
                while several novel 3D DNA structures were synthesized to produce signals <i>in vivo</i><sup>[17],[18]</sup>.
 +
                Given these advancements, our ultimate goal is to enable our functional DNA nanostructure to be synthesized and self-assembled in E. coli, that can function inside the disease cells.  
 +
                This, if successful and with further refinement, could be a great replacement to colour coded surgery in the surgical field.<sup>[19]</sup><br>
 +
                Last but not least, the cost and quality of production, efficiency and accuracy of our intracellularly-synthesized 3D structure will be compared to current diagnostic methods.
 +
                </font><br>
 +
                <span class="label label-info">References</span><br><br>
 +
                <font size="2">
 +
                14. Miao, P., Wang, B., Chen, X., Li, X., & Tang, Y. (2015). Tetrahedral DNA nanostructure-based microRNA biosensor coupled with catalytic recycling of the analyte. ACS applied materials & interfaces, 7(11), 6238-6243.
 +
                <br>15. Li W. et. al. (2015). Highly selective and sensitive detection of miRNA based on toehold-mediated strand displacement reaction and DNA tetrahedron substrate. Biosensors and Bioelectronics. 71, 401-406.
 +
                <br>16. Elbaz, J., Yin, P., & Voigt, C. A. (2016). Genetic encoding of DNA nanostructures and their self-assembly in living bacteria. Nature communications, 7.
 +
                <br>17. Kim K. et. al. (2013). Drug delivery by self-assembled DNA tetrahedron for overcoming drug resistance in breast cancer cells. Chem. Commun. 49, 2010-2012.
 +
                <br>18. Kim K. et. al. (2013). Sentinel lymph node imaging by a fluorescently labeled DNA tetrahedron. Biomaterials. 34, 5226-5235.
 +
                <br>19. Nguyen, Q. T., & Tsien, R. Y. (2013). Fluorescence-guided surgery with live molecular navigation [mdash] a new cutting edge. Nature reviews cancer, 13(9), 653-662.
 +
                </font><br></p>
 +
                <a href="https://2016.igem.org/Team:Hong_Kong_HKU/Proof" target="_blank"><button type="button" class="btn btn-info center-block" align="center">Check out proof of concept here</button></a>
 +
              </div>
 +
            </div>
 +
          </div>
 +
        </div>
 +
    </div>
 
   </div>
 
   </div>
<hr>
 
 
</div>
 
</div>
  
 
<!-- footer -->
 
<!-- footer -->
<footer class="text-center">
+
<footer class="text-center"></footer>
  <table cellspacing="0" cellpadding="0" max-width="90%" height="78" border="0" align="center">
+
<script src="https://2016.igem.org/Team:Hong_Kong_HKU/JS/jQuery?action=raw&ctype=text/javascript" type="text/javascript"></script>
  <tbody>
+
    <tr align="center">
+
      <td width="70%"><h4>Sponsors</h4></td>
+
      <td width="20%"><h4>Contact</h4></td>
+
    </tr>
+
    <tr>
+
      <td><img class="img-responsive center-block" src="https://static.igem.org/mediawiki/2016/c/cd/T--Hong_Kong_HKU--IDT-Logo.png" width="185px" height="51px" alt="Placeholder image">
+
      <img class="img-responsive center-block" src="https://static.igem.org/mediawiki/2016/7/76/T--Hong_Kong_HKU--SnapGeneLogo72.jpg" width="180px" height="51px" alt="Placeholder image"></td>
+
      <td>Email: <a href="mailto:igemhku@hku.hk" target="_blank">igemhku@hku.hk</a></td>
+
    </tr>
+
  </tbody>
+
</table>
+
    <div class="row">
+
        <p style="text-align: center;">Copyright © 2016 HKU iGEM. All rights reserved.</p>
+
      </div>
+
</footer>
+
 
<script src="https://2016.igem.org/Template:Hong_Kong_HKU/js/script?action=raw&ctype=text/javascript" type="text/javascript"></script>
 
<script src="https://2016.igem.org/Template:Hong_Kong_HKU/js/script?action=raw&ctype=text/javascript" type="text/javascript"></script>
 
</body>
 
</body>
 
</html>
 
</html>
 +
{{Hong_Kong_HKU/Footer}}

Latest revision as of 03:29, 19 October 2016

Project

Description

This summer, we focuses on the intriguing world of diagnostic probes. We spent approximately 2 weeks to finalize our designs and we finally came up with an elegant tetrahedral design. Our ultimate goal is to enable our functional DNA nanostructure to be synthesized and self-assembled in E. coli. They will detect specific biomarkers expressed in the diseased cells.
We are presenting our brainstorming of ideas and linking them to the key elements of the iGEM competition. Click to explore and enjoy.

Early diagnosis of cancer


Cancer has always been a devastating disease. In 2012, there were 14.1 million new cancer cases worldwide.[1] Early diagnosis of cancer may help to reduce the mortality rate and extend the life expectancy of patients. For instance, in the U. K., nearly 90% of patients diagnosed with stage I lung cancer lived for more than a year while only 19% of patients diagnosed at stage IV do so.[2] Early diagnosis of cancer is also believed to be vital for successful treatment and recovery.
Significant gene mutations might indicate the possibility of development of cancers. Although recent research has diagnosed cancers by analyzing individual genetic mutation profiles[3],[4], such diagnostic method takes up considerable amount of time to obtain accurate results. As conventional diagnostic methods involve complicated procedures, DNA nanostructures have been introduced to detect cancer biomarkers to facilitate simple diagnosis.

DNA nanostructures and miRNAs as biomarkers

DNA has emerged as a promising material that allows researchers to construct novel designs as its structure could be predicted easily and accurately.[5] Examples of DNA nanostructures include nano-tweezers to detect norovirus and a DNA ‘Nano-Claw’ to detect membrane markers of cancer cells.[6],[7]
DNA Boolean logic gates have been constructed to produce signals in the presence of multiple targets, such as OR-gate and AND-gate DNA tetrahedra that generate fluorescence resonance energy transfer (FRET) signal when multiple inputs hybridize with the probe.[8] As for the targets to be detected, different microRNAs (miRNAs) have been identified to be associated with cancers. For example, miR-15b-5p, miR-338-5p, and miR-764 found in plasma are potential biomarkers for detecting hepatocellular carcinoma cancer (HCC), a common type of liver cancer.[9] It has already been reported that it is promising to use these biomarkers - miRNAs to detect cancers.[10]


References

1. American Cancer Society. (2015). Global Cancer Facts & Figures. Retrieved from http://www.cancer.org/acs/groups/content/@research/documents/document/acspc-044738.pdf
2.Public Health England. (2014). National Cancer Intelligence Network Cancer survival in England by stage. Retrieved from http://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/lung-cancer/survival#ref-3
3.Pereira, B., Chin, S., Rueda, O. M., Vollan, H. M., Provenzano, E., Bardwell, H. A., Pugh, M., et al. (2016). The somatic mutation profiles of 2500 primary breast cancers refine their genomic landscapes. Nature Communications
4.Pereira, B., Chin, S. F., Rueda, O. M., Vollan, H. K. M., Provenzano, E., Bardwell, H. A., ... & Tsui, D. W. (2016). The somatic mutation profiles of 2,433 breast cancers refines their genomic and transcriptomic landscapes. Nature communications, 7.
5.Chen, Y. J., Groves, B., Muscat, R. A., & Seelig, G. (2015). DNA nanotechnology from the test tube to the cell. Nature nanotechnology, 10(9), 748-760.
6.Nakatsuka, K., Shigeto, H., Kuroda, A., & Funabashi, H. (2015). A split G-quadruplex-based DNA nano-tweezers structure as a signal-transducing molecule for the homogeneous detection of specific nucleic acids. Biosensors and Bioelectronics, 74, 222-226.
7.You, M., Peng, L., Shao, N., Zhang, L., Qiu, L., Cui, C., & Tan, W. (2014). DNA “nano-claw”: logic-based autonomous cancer targeting and therapy. Journal of the American Chemical Society, 136(4), 1256-1259.
8.Pei, H., Liang, L., Yao, G., Li, J., Huang, Q., & Fan, C. (2012). Reconfigurable Three‐Dimensional DNA Nanostructures for the Construction of Intracellular Logic Sensors. Angewandte Chemie, 124(36), 9154-9158.
9.Chen, Y., Chen, J., Liu, Y., Li, S., & Huang, P. (2015). Plasma miR-15b-5p, miR-338-5p, and miR-764 as Biomarkers for Hepatocellular Carcinoma. Medical science monitor: international medical journal of experimental and clinical research, 21, 1864.
10.Montani, F., & Bianchi, F. (2016). Circulating Cancer Biomarkers: The Macro-revolution of the Micro-RNA. EBioMedicine, 5, 4-6.



In vivo synthesis of functional DNA nanostructure


Our aim is to design a novel DNA nanostructure that can detect multiple miRNA targets simultaneously. We hope that our design can discriminate a single base mutation of the target miRNAs. Hence, it can be highly specific to our targets and avoid false positives. Our goal is clear - we aim to design a tool which can possibly detect a combination of biomarkers and enhance the sensitivity of detecting a particular type of cancer.
Recently, in vitro applications of DNA nanostructure have already achieved point-of-care (POC) diagnosis[11]. Therefore, we hope to move from in vitro to in vivo by developing a self-assembled DNA nanostructure that can potentially target miRNAs in vivo. Detecting serum miRNA can be challenging because of the low serum miRNA level, so methods such as quantitative polymerase chain reaction are used to amplify the target miRNAs before detecting them.[12] We hope that our DNA nanostructure, which is synthesized and assembled in vivo, can potentially eliminate the need of target amplification. In addition, our design has an advantage over the current designs of molecular beacon. Molecular beacon makes use of fluorophores and quenchers[13], which cannot be synthesized in vivo. Our design does not require the use of fluorophore and quencher and thus can work well inside cells. In addition, our DNA nanostructure can be produced at a lower cost as fluorophore and quencher are not used.

Placeholder image

References

11. Hartman, Mark R., et al.(2013) . "Point-of-care nucleic acid detection using nanotechnology." Nanoscale 5.21 (2013): 10141-10154.
12. Wang. W.T., Chen.Y.Q. (2014). "Circulating miRNAs in cancer: from detection to therapy." Journal of Hematology & Oncology. (2014): Vol.7. 86.
13. TSOURKAS, Andrew, et al. (2003). Hybridization kinetics and thermodynamics of molecular beacons. Nucleic acids research, 2003, 31.4: 1319-1330.


Our design is a 3-dimensional structure that can be self-assembled from oligonucleotides. Our aim is to construct a nanostructure that is able to detect multiple miRNA biomarkers such that it can reach a higher accuracy for diagnosis. For the selection of biomarkers, we are looking for a combination of miRNAs that are specific to a certain type of disease including cancers. At current stage, we are testing different designs in vitro to see if they can produce desired signals. After proving our designs can work in vitro, we will attempt to test them in vivo. Finally, we will design a mechanism such that E. coli can synthesize the required oligonucleotides to form the specified nanostructure.

Placeholder image

A leap forward - in vivo synthesis of 3D functional DNA nanostructures

In the past decade, functional DNA nanostructures have been used in similar in vitro approaches to detect various cancer biomarkers.[14],[15] It is noted that most of those designs were applied in vitro. Recently, 1D and 2D DNA structures were successfully expressed and assembled in vivo[16], while several novel 3D DNA structures were synthesized to produce signals in vivo[17],[18]. Given these advancements, our ultimate goal is to enable our functional DNA nanostructure to be synthesized and self-assembled in E. coli, that can function inside the disease cells. This, if successful and with further refinement, could be a great replacement to colour coded surgery in the surgical field.[19]
Last but not least, the cost and quality of production, efficiency and accuracy of our intracellularly-synthesized 3D structure will be compared to current diagnostic methods.

References

14. Miao, P., Wang, B., Chen, X., Li, X., & Tang, Y. (2015). Tetrahedral DNA nanostructure-based microRNA biosensor coupled with catalytic recycling of the analyte. ACS applied materials & interfaces, 7(11), 6238-6243.
15. Li W. et. al. (2015). Highly selective and sensitive detection of miRNA based on toehold-mediated strand displacement reaction and DNA tetrahedron substrate. Biosensors and Bioelectronics. 71, 401-406.
16. Elbaz, J., Yin, P., & Voigt, C. A. (2016). Genetic encoding of DNA nanostructures and their self-assembly in living bacteria. Nature communications, 7.
17. Kim K. et. al. (2013). Drug delivery by self-assembled DNA tetrahedron for overcoming drug resistance in breast cancer cells. Chem. Commun. 49, 2010-2012.
18. Kim K. et. al. (2013). Sentinel lymph node imaging by a fluorescently labeled DNA tetrahedron. Biomaterials. 34, 5226-5235.
19. Nguyen, Q. T., & Tsien, R. Y. (2013). Fluorescence-guided surgery with live molecular navigation [mdash] a new cutting edge. Nature reviews cancer, 13(9), 653-662.


Copyright © 2016 HKU iGEM. All rights reserved.