Difference between revisions of "Team:Hong Kong HKU"

(Implement the new UI)
m
 
(33 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Hong_Kong_HKU/UI}}
 
 
<html>
 
<html>
<head>
 
 
<meta http-equiv="X-UA-Compatible" content="IE=edge">
 
<meta http-equiv="X-UA-Compatible" content="IE=edge">
 
<meta name="viewport" content="width=device-width, initial-scale=1.0">
 
<meta name="viewport" content="width=device-width, initial-scale=1.0">
 +
<style>
 +
#sideMenu
 +
{display:none; /* Disable the display of the annoying side main menu*/}
 +
#top_title
 +
{display:none; /* Disable the annoying title*/}
 +
#content
 +
{padding:0px; width:90%; margin-left:5%; margin-right:5%;background-color: rgba(255,255,255,0);}
 +
body
 +
{margin: 0;
 +
font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;
 +
font-size: 24px;
 +
color: #333333;
 +
background-color: #fafafa;
 +
background-image:url(https://static.igem.org/mediawiki/2016/a/ae/T--Hong_Kong_HKU--Background_image.png);
 +
background-position:center center;
 +
background-repeat:no-repeat;
 +
-moz-background-size: cover;
 +
background-size: cover;
 +
background-attachment:fixed;}
 +
.container
 +
{background-color: rgba(255,255,255,0.6);
 +
padding-top:80px;}
 +
p {font-size: 16px;}
 +
h1,h2,h3,h4,h5,h6 {color: #282828;}
 +
h1 {font-size:72px;} h2 {font-size:48px;} h3 {font-size:36px;}
 +
h4 {font-size:32px;} h5 {font-size:28px;} h6 {font-size:24px;}
 +
.panel-body{background-color:rgba(255, 255, 255, 0) !important;}
 +
.panel-heading{background-color:rgba(255, 255, 255, 0.7)  !important;}
 +
.panel-group{background-color:rgba(255, 255, 255, 0)  !important;}
 +
.panel-transparent{background-color:rgba(255, 255, 255, 0) !important;}
 +
</style>
 +
<link href="css/bootstrap.css" rel="stylesheet" type="text/css">
 +
<head>
 +
<meta charset="utf-8">
 +
<meta http-equiv="X-UA-Compatible" content="IE=edge">
 +
<meta name="viewport" content="width=device-width, initial-scale=1">
 
<link href="https://2016.igem.org/Team:Hong_Kong_HKU/css/default?action=raw&ctype=text/css" type="text/css" rel="stylesheet">
 
<link href="https://2016.igem.org/Team:Hong_Kong_HKU/css/default?action=raw&ctype=text/css" type="text/css" rel="stylesheet">
 +
<link href="https://2016.igem.org/Team:Hong_Kong_HKU/css/custom?action=raw&ctype=text/css" type="text/css" rel="stylesheet">
 
</head>
 
</head>
 
+
</html>
 +
{{Hong_Kong_HKU/Header}}
 +
<html>
 
<body>
 
<body>
<script src="https://2016.igem.org/Template:Hong_Kong_HKU/js/script?action=raw&ctype=text/javascript"></script>
+
<div class="container" align="center">
<div class="container">
+
     <h2>Welcome to HKU iGEM HomePage!</h2><br>
  <div class="row">
+
     <div class="panel-group" id="BackgroundContent" role="tablist" aria-multiselectable="true">
     <div class="col-xs-12">
+
      <div class="panel panel-transparent">
     <a class="left carousel-control" href="#carousel1" role="button" data-slide="prev"><span class="glyphicon glyphicon-chevron-left" aria-hidden="true"></span><span class="sr-only">Previous</span></a><a class="right carousel-control" href="#carousel1" role="button" data-slide="next"><span class="glyphicon glyphicon-chevron-right" aria-hidden="true"></span><span class="sr-only">Next</span></a></div>
+
        <div class="panel-heading" role="tab">
<img class="img-responsive center-block" alt="256x256" style="width: 256px; height: 256px;" src="https://static.igem.org/mediawiki/2016/2/24/Logo_HKU_256x256.jpg" data-holder-rendered="true">
+
          <h4 class="panel-title"><h3>Background</h3></h4>
      <h1 class="text-center">Welcome</h1>
+
        </div>
           <p class="text-center">We are launching our new UI soon</p>
+
        <div id="Background" class="panel-collapse collapse in">
          <p>&nbsp;</p>
+
           <div class="panel-body">
           <p class="text-center"><a class="btn btn-primary btn-lg" href="#" role="button">Learn more</a> </p>
+
           <p class="text-justify" align="left"><font size="3">
  </div>
+
          Since last decade, microRNAs have been identified as promising biomarkers for specific diseases, one common type is cancer.
      <div id="carousel1" class="carousel slide" data-ride="carousel">
+
           miRNA, usually of around 22 nucleotides long, are made inside our body via complex mechanisms.
        <ol class="carousel-indicators">
+
          They play important roles in gene regulation through several ways, such as binding with messenger-RNA (mRNA) to inhibit translation and speeding up mRNA degradation to cause gene silencing.
           <li data-target="#carousel1" data-slide-to="0" class="active"></li>
+
           Dysregulation of miRNA expression may lead to under- or over-expression of genes and hence diseases.<br>
           <li data-target="#carousel1" data-slide-to="1"></li>
+
           G-quadruplexes (Gq) are formed by 4 strands of DNA made up of Guanine bases.
           <li data-target="#carousel1" data-slide-to="2"></li>
+
          When Gq forms a complex with Hemin, it exhibits peroxidase activity and functions as a DNAzyme.
        </ol>
+
          Its catalytic activity is utilized in many DNA nanostructures where a colour change is produced by target-induced conformational change.<br>
        <div class="carousel-inner" role="listbox">
+
          During the strand displacement reactions, two strands with partly or fully complementary sequences hybridize to each other,
          <div class="item active"><img src="images/Carousel_Placeholder.png" alt="First slide image" class="center-block">
+
          displacing one or more pre-hybridised strands. This process is initiated at a single-stranded site called a ‘toehold’.
            <div class="carousel-caption">
+
          Seeing this as a commonly-employed reaction in DNA nanostructure designs, we of course include this as one of our the main properties we have in our designs.
              <h3>First slide Heading</h3>
+
      </font></p>
              <p>First slide Caption</p>
+
            </div>
+
 
           </div>
 
           </div>
          <div class="item"><img src="images/Carousel_Placeholder.png" alt="Second slide image" class="center-block">
+
        </div>
            <div class="carousel-caption">
+
      </div>
              <h3>Second slide Heading</h3>
+
      <div class="panel panel-transparent">
              <p>Second slide Caption</p>
+
        <div class="panel-heading">
            </div>
+
          <h4 class="panel-title"><h3>Abstract</h3></h4>
          </div>
+
        </div>
          <div class="item"><img src="images/Carousel_Placeholder.png" alt="Third slide image" class="center-block">
+
        <div id="Abstract" class="panel-collapse collapse in">
            <div class="carousel-caption">
+
          <div class="panel-body">
              <h3>Third slide Heading</h3>
+
          <h4>In vivo synthesis of DNA nanostructures for disease diagnosis through miRNA-induced structural transformation</h4>
              <p>Third slide Caption</p>
+
            <p class="text-justify" align="left"><font size="3">
             </div>
+
             DNA has emerged as a promising material for the creation of novel functional nanostructures.
 +
            Here we present DNA nanostructures capable of simultaneous detection of multiple microRNA (miRNA) targets which are identified as promising disease biomarkers.
 +
            Logic gates can be easily incorporated into our designs to test various combinations of miRNA targets.
 +
            G-quadruplexes form when the specified target hybridizes with the probe, generating fluorescence in the presence of substrate.
 +
            We endeavor to demonstrate intracellular synthesis, self-assembly and functioning of our nanostructures inside E. coli.
 +
            Our constructs open up new possibilities in future research on DNA nanotechnologies as diagnostic tools, and promote the applications of miRNA testing in clinical conditions.
 +
          </font></p>
 
           </div>
 
           </div>
 
         </div>
 
         </div>
    </div>
+
      </div>
 +
  </div>
 +
 
 
</div>
 
</div>
 +
 +
<!-- footer -->
 +
<footer class="text-center"></footer>
 +
<script src="https://2016.igem.org/Team:Hong_Kong_HKU/JS/jQuery?action=raw&ctype=text/javascript" type="text/javascript"></script>
 +
<script src="https://2016.igem.org/Template:Hong_Kong_HKU/js/script?action=raw&ctype=text/javascript" type="text/javascript"></script>
 
</body>
 
</body>
 
</html>
 
</html>
{{Hong_Kong_HKU/footer}}
+
{{Hong_Kong_HKU/Footer}}

Latest revision as of 05:47, 19 October 2016

Welcome to HKU iGEM HomePage!


Since last decade, microRNAs have been identified as promising biomarkers for specific diseases, one common type is cancer. miRNA, usually of around 22 nucleotides long, are made inside our body via complex mechanisms. They play important roles in gene regulation through several ways, such as binding with messenger-RNA (mRNA) to inhibit translation and speeding up mRNA degradation to cause gene silencing. Dysregulation of miRNA expression may lead to under- or over-expression of genes and hence diseases.
G-quadruplexes (Gq) are formed by 4 strands of DNA made up of Guanine bases. When Gq forms a complex with Hemin, it exhibits peroxidase activity and functions as a DNAzyme. Its catalytic activity is utilized in many DNA nanostructures where a colour change is produced by target-induced conformational change.
During the strand displacement reactions, two strands with partly or fully complementary sequences hybridize to each other, displacing one or more pre-hybridised strands. This process is initiated at a single-stranded site called a ‘toehold’. Seeing this as a commonly-employed reaction in DNA nanostructure designs, we of course include this as one of our the main properties we have in our designs.

Abstract

In vivo synthesis of DNA nanostructures for disease diagnosis through miRNA-induced structural transformation

DNA has emerged as a promising material for the creation of novel functional nanostructures. Here we present DNA nanostructures capable of simultaneous detection of multiple microRNA (miRNA) targets which are identified as promising disease biomarkers. Logic gates can be easily incorporated into our designs to test various combinations of miRNA targets. G-quadruplexes form when the specified target hybridizes with the probe, generating fluorescence in the presence of substrate. We endeavor to demonstrate intracellular synthesis, self-assembly and functioning of our nanostructures inside E. coli. Our constructs open up new possibilities in future research on DNA nanotechnologies as diagnostic tools, and promote the applications of miRNA testing in clinical conditions.


Copyright © 2016 HKU iGEM. All rights reserved.