Difference between revisions of "Team:BGU ISRAEL/Description"

 
(23 intermediate revisions by 3 users not shown)
Line 17: Line 17:
 
                     <ul class="mainmenu nav navbar-nav">
 
                     <ul class="mainmenu nav navbar-nav">
 
                         <li class="dropdown" id="HomeB"><a class="dropdown-toggle" href="https://2016.igem.org/Team:BGU_ISRAEL">Home</a>
 
                         <li class="dropdown" id="HomeB"><a class="dropdown-toggle" href="https://2016.igem.org/Team:BGU_ISRAEL">Home</a>
                         <li class="dropdown" id="projectB" style="background-color: #CB99C9"><a class="dropdown-toggle" href="https://2016.igem.org/Team:BGU_ISRAEL/Project">Project</a>
+
                         <li class="dropdown" id="projectB" style="background-color: #CB99C9;"><a class="dropdown-toggle" href="https://2016.igem.org/Team:BGU_ISRAEL/Project">Project</a>
 
                             <ul class="dropdown-menu submenubgu">
 
                             <ul class="dropdown-menu submenubgu">
 
                                 <li><a href="https://2016.igem.org/Team:BGU_ISRAEL/Description">Description</a></li>
 
                                 <li><a href="https://2016.igem.org/Team:BGU_ISRAEL/Description">Description</a></li>
 
                                 <li><a href="https://2016.igem.org/Team:BGU_ISRAEL/Design">Design</a></li>
 
                                 <li><a href="https://2016.igem.org/Team:BGU_ISRAEL/Design">Design</a></li>
 
                                 <li><a href="https://2016.igem.org/Team:BGU_ISRAEL/Experiments">Experiments</a></li>
 
                                 <li><a href="https://2016.igem.org/Team:BGU_ISRAEL/Experiments">Experiments</a></li>
                                <li><a href="https://2016.igem.org/Team:BGU_ISRAEL">Proof of Concept</a></li>
 
 
                                 <li><a href="https://2016.igem.org/Team:BGU_ISRAEL/Results">Results</a></li>
 
                                 <li><a href="https://2016.igem.org/Team:BGU_ISRAEL/Results">Results</a></li>
 
                                 <li><a href="https://2016.igem.org/Team:BGU_ISRAEL/Protocols">Protocols</a></li>
 
                                 <li><a href="https://2016.igem.org/Team:BGU_ISRAEL/Protocols">Protocols</a></li>
 +
                                <li><a href="https://2016.igem.org/Team:BGU_ISRAEL/Notebook">Notebook</a></li>
 +
                                <li><a href="https://2016.igem.org/Team:BGU_ISRAEL/Achievements">Achievements</a></li>
 
                             </ul>
 
                             </ul>
 
                         </li>
 
                         </li>
Line 35: Line 36:
 
                             </ul>
 
                             </ul>
 
                         </li>
 
                         </li>
                        <li class="dropdown" id="notebookB"><a class="dropdown-toggle" href="https://2016.igem.org/Team:BGU_ISRAEL/Notebook">Notebook</a></li>
+
 
 
                         <li class="dropdown" id="partsB"><a class="dropdown-toggle" href="https://2016.igem.org/Team:BGU_ISRAEL/Parts">Parts</a>
 
                         <li class="dropdown" id="partsB"><a class="dropdown-toggle" href="https://2016.igem.org/Team:BGU_ISRAEL/Parts">Parts</a>
 
                             <ul class="dropdown-menu submenubgu">
 
                             <ul class="dropdown-menu submenubgu">
                                 <li><a href="https://2016.igem.org/Team:BGU_ISRAEL/PartsOverview">Overview</a></li>
+
                                 <li><a href="https://2016.igem.org/Team:BGU_ISRAEL/Parts#Overview">Overview</a></li>
                                 <li><a href="https://2016.igem.org/Team:BGU_ISRAEL/BasicParts">Basic Parts</a></li>
+
                                 <li><a href="https://2016.igem.org/Team:BGU_ISRAEL/Basic_Part">Basic Parts</a></li>
 
                                 <li><a href="https://2016.igem.org/Team:BGU_ISRAEL/ImprovedParts">Improved Parts</a></li>
 
                                 <li><a href="https://2016.igem.org/Team:BGU_ISRAEL/ImprovedParts">Improved Parts</a></li>
                                <li><a href="https://2016.igem.org/Team:BGU_ISRAEL/PartsCollection">Part Collection</a></li>
 
 
                             </ul>
 
                             </ul>
 
                         </li>
 
                         </li>
<li class="dropdown" id="humanB"><a class="dropdown-toggle" href="https://2016.igem.org/Team:BGU_ISRAEL/HumanPractice">Human Practices</a>
+
                        <li class="dropdown" id="humanB"><a class="dropdown-toggle" href="https://2016.igem.org/Team:BGU_ISRAEL/Integrated_Practices">Human Practices</a>
 
                             <ul class="dropdown-menu submenubgu">
 
                             <ul class="dropdown-menu submenubgu">
                                 <li><a href="https://2016.igem.org/Team:BGU_ISRAEL/HumanPractice">Overview</a></li>
+
                                 <li><a href="https://2016.igem.org/Team:BGU_ISRAEL/Integrated_Practices">Integrated Practices</a></li>
                                <li><a href="https://2016.igem.org/Team:BGU_ISRAEL/HumanPractice#Acquiring">Acquiring Knowledge</a></li>
+
                                <li><a href="https://2016.igem.org/Team:BGU_ISRAEL/#Outreach">Public Outreach</a></li>
+
                                <li><a href="https://2016.igem.org/Team:BGU_ISRAEL/#Engagement">Public Engagement</a></li>
+
 
                                 <li><a href="https://2016.igem.org/Team:BGU_ISRAEL/PlasticArt">Plastic Art</a></li>
 
                                 <li><a href="https://2016.igem.org/Team:BGU_ISRAEL/PlasticArt">Plastic Art</a></li>
                                 <li><a href="https://2016.igem.org/Team:BGU_ISRAEL/EtichsAndSaftey">Ethics & Safety</a></li>
+
                                 <li><a href="https://2016.igem.org/Team:BGU_ISRAEL/EthicsAndSafety">Ethics & Safety</a></li>
 
                             </ul>
 
                             </ul>
 
                         </li>
 
                         </li>
 
+
                        <li class="dropdown" id="attributionsB"><a class="dropdown-toggle" href="https://2016.igem.org/Team:BGU_ISRAEL/Attributions">Attributions</a></li>
 
                         <li class="dropdown" id="awardsB"><a class="dropdown-toggle" href="https://2016.igem.org/Team:BGU_ISRAEL/Awards">Awards</a>
 
                         <li class="dropdown" id="awardsB"><a class="dropdown-toggle" href="https://2016.igem.org/Team:BGU_ISRAEL/Awards">Awards</a>
 
                             <ul class="dropdown-menu submenubgu">
 
                             <ul class="dropdown-menu submenubgu">
 
                                 <li><a href="https://2016.igem.org/Team:BGU_ISRAEL/Entrepreneurship">Entrepreneurship</a></li>
 
                                 <li><a href="https://2016.igem.org/Team:BGU_ISRAEL/Entrepreneurship">Entrepreneurship</a></li>
                                 <li><a href="https://2016.igem.org/Team:BGU_ISRAEL/Model">Model</a></li>
+
                                 <li><a href="https://2016.igem.org/Team:BGU_ISRAEL/Measurements">Measurements</a></li>
 +
                                <li><a href="https://2016.igem.org/Team:BGU_ISRAEL/Proof">Proof Of Concept</a></li>
 +
                                <li><a href="https://2016.igem.org/Team:BGU_ISRAEL/Demonstrate">Demonstrate</a></li>
 +
                                <li><a href="https://2016.igem.org/Team:BGU_ISRAEL/HP/Silver">HP - Silver</a></li>
 +
                                <li><a href="https://2016.igem.org/Team:BGU_ISRAEL/HP/Gold">HP - Gold</a></li>
 +
                                <li><a href="https://2016.igem.org/Team:BGU_ISRAEL/Engagement">Engagements</a></li>
 
                             </ul>
 
                             </ul>
 
                         </li>
 
                         </li>
Line 72: Line 74:
 
                 </div>
 
                 </div>
 
             </div>
 
             </div>
 +
        </div>
 +
        <div class="container-fluid">
 
             <div class="row whiteback">
 
             <div class="row whiteback">
 
                 <div class="col-lg-2"></div>
 
                 <div class="col-lg-2"></div>
 
                 <div class="col-lg-8">
 
                 <div class="col-lg-8">
                     <div class="DescriptionBox">
+
                     <div class="descText">
                         <div class="contentText">
+
                         <p>
                             <p>
+
                             Many date the invention of plastic by Alexander Parkes (Parkesine) as far as 1856, back then plastic was made almost entirely of cellulose,
                                Many date the invention of plastic by Alexander Parkes (Parkesine) as far as 1856, back then plastic was made almost entirely of cellulose, a natural substance found in plants. With the advancements made in the field of polymer chemistry during the 20th century, many new polymers were introduced into industry and are known to us today as Polystyrene, Polyethylene and Polyethylene terephthalate (PET). Plastic immediately gained popularity, being cheap, durable and easily molded into different solid shapes, and can be even used as an ink in 3D printers. However, one of its best features was found to be one of its greatest drawbacks, the durability of plastic makes it virtually non-degradable. An average bottle of mineral water takes roughly half a millennium to decompose, thus, leading to a global accumulation of plastic waste. Many ideas were considered in dealing with plastic waste such as burning plastic or burying it, but these solutions are considered damaging to the environment due to plastics toxicity. Since the introduction of plastics, some microbial communities or species have evolved to successfully degrade plastics, however, from an evolutionary point of view, probably due to the relatively short period of exposure to plastics, they are yet to be efficient in plastic biodegradation.
+
                            a natural substance found in plants. With the advancements made in the field of polymer chemistry during the 20th century,  
                            </p>
+
                            many new polymers were introduced into industry and are known to us today as Polystyrene, Polyethylene and Polyethylene terephthalate (PET).  
                            <br>
+
                            Plastic immediately gained popularity, being cheap, durable and easily molded into different solid shapes, and can be even used as an ink in 3D printers.  
                             <p>
+
                            However, one of its best features was found to be one of its greatest drawbacks, the durability of plastic makes it virtually non-degradable.  
                                Our goal as the Ben-Gurion University IGEM team is to overcome this evolutionary hurdle by devising several approaches using synthetic biology tools for efficient plastic biodegradation. In addition, we plan to utilize the high energy stored in PET molecules, for electricity production. In order to achieve that, four courses of action were chosen:
+
                            An average bottle of mineral water takes roughly half a millennium to decompose, thus, leading to a global accumulation of plastic waste.  
                            </p>
+
                            Many ideas were considered in dealing with plastic waste such as burning plastic or burying it, but these solutions are considered damaging to the environment due to plastics toxicity.  
                            <ol>
+
                            Since the introduction of plastics, some microbial communities or species have evolved to successfully degrade plastics, however,  
                                <li><u>An Organism Evolution Approach:</u> Since plastic is a new synthetic polymer introduced recently to the environment by mankind,
+
                            from an evolutionary point of view, probably due to the relatively short period of exposure to plastics,  
                                    not many organisms have adapted to utilizing it as a carbon source,
+
                            they are yet to be efficient in plastic biodegradation.
                                    and those that have, have yet to perfect that ability.
+
                        </p>
                                    Hence, one of our approaches is to use an organism which has developed a "solution" for the utilization of plastic, and try to improve that "solution" using methods of experimental evolution and serial passaging. We have chosen to improve the bacterium <i>Rhodococcus ruber</i> that was isolated by Prof. Alex Sivan from our university and has been found to have a polyethylene degradation ability.
+
                        <div class="descPicWrapper">
                                </li>
+
                             <img class="img-responsive descPics" src="https://static.igem.org/mediawiki/2016/2/24/Description_imageBGU2016.png" alt="">
                                <li><u>A Protein Engineering Approach:</u> The 2nd approach we have adopted is the engineering of the LC-Cutinase protein.
+
                                    LC-Cutinase is an enzyme discovered from an unknown organism in leaf-branch compost, and has been found to be one of the most efficient enzymes in breaking down PET polymers into degradable products.
+
                                    Based on the LC-Cutinase structure that was solved in 2012, we have chosen to use a rational mutagenesis approach for its improvement. <br>
+
                                    In this approach, we made various mutations using an algorithm that compares the sequence of the original protein with that of other homologous proteins and then chooses a set of mutations. <br>
+
                                    The algorithm then calculates the differences in free energy (&Delta;&Delta;G) for each of the mutants compared to the free energy of W.T. protein.
+
                                    Using this method we received 4 different variants that we plan to test for improvements in activity and stability. 
+
                                </li>
+
                                <li>
+
                                    <u>Genetic Engineering of Metabolic Pathways:</u> We plan to insert two metabolic pathways to the soil bacterium <i>Pseudomonas putida</i> using genetic engineering. The two pathways will utilize the two PET degradation products - terephthalate and ethylene glycol. The terephthalate degradation pathway, derived from a strain of <i>Commamonas</i>, terminates in protocatechuate, which our chosen bacterium is able to utilize as a carbon source.
+
                                    The ethylene glycol degradation pathway is derived from <i>E. coli</i> strain MG1655 and terminates in glycolate - also a material which our bacterium can utilize as a carbon source. <br>
+
                                    This way, we hope to achieve a full degradation of the two PET products and with it to drive the PET biocatalysis reaction by LC-Cutinase forward. <br>
+
                                    We have chosen to work with <i>Pseudomonas putida</i>, which is a gram-negative bacterium that has a diverse metabolism, including the ability to degrade organic solvents, especially protocatechuate, a toxic substance for most bacteria, which is
+
                                    the product of the first enzymatic cascade for the breaking down of terephthalate. <br>
+
                                    Our goal is to genetically engineer <i>P. putida</i> so it will contain three plasmids which will encode for three essential components: the ethylene glycol metabolic pathway; a membrane transporter that will carry the terephthalate molecule into the cell and the necessary genes for its degradation.
+
                                </li>
+
                                <li>
+
                                    <u>Microbial Fuel Cells</u> - Since PET is a polymer that contains a lot of energy in its carbon-carbon bonds, excess energy released by our engineered microorganisms from the carbon-carbon bond degradation will be harnessed and utilized in a microbial fuel cell, leading to an efficient and energy producing, rather than consuming, degradation of PET.
+
                                </li>
+
                            </ol>
+
 
                         </div>
 
                         </div>
 +
                        <p>
 +
                            Our goal as the Ben-Gurion University IGEM team of 2016 is to overcome this evolutionary hurdle by devising several approaches using synthetic biology
 +
                            tools for efficient plastic biodegradation. In addition, we plan to utilize the high energy stored in PET molecules, for electricity production.
 +
                            In order to achieve that, the following research scheme has been devised:
 +
                        </p>
 +
                        <div class="descTitle">
 +
                            <u>A Protein Engineering Approach</u>
 +
                        </div>
 +
                        <div class="descPicWrapper">
 +
                            <img class="img-responsive descPics" src="https://static.igem.org/mediawiki/2016/c/cd/Intro_proteinBGU2016.png" alt="">
 +
                        </div>
 +
                        <p> We have decided to engineer the LC-Cutinase enzyme. LC-Cutinase is an enzyme discovered from an unknown organism in leaf-branch compost, and has been found to be one of the most efficient enzymes in breaking down PET polymers with relatively high crystallinity into degradable products, the monomers ethylene glycol and terephthalic acid. Based on the LC-Cutinase structure that was solved in 2014 (Sulaiman et al 2014), we have chosen to use a rational mutagenesis approach for its improvement.
 +
                            Using this approach, we made various mutations using an algorithm developed by Dr. Sarel Fleishman of the Weizmann Institute of Science (Goldenzweig et al. 2016). The algorithm compares the sequence of the original protein with that of other homologous proteins and then chooses a set of mutations.
 +
                            The algorithm then calculates the differences in free energy (&#916;&#916;G) of each mutated variant compared to the free energy of the W.T. protein and selects for a library of variants that are thermodynamically stable.
 +
                            Using this algorithm, we received 4 different variants that we further tested for improvements in activity, stability and expression levels. In addition, the pelB leader sequence was fused to the enzyme in its N terminus and was expressed and secreted to the growth media of <i>E. coli</i>.
 +
                        </p>
 +
                        <div class="descTitle">
 +
                            <u>Genetic Engineering of Metabolic Pathways</u>
 +
                        </div>
 +
                        <div class="descPicWrapper">
 +
                            <img class="img-responsive descPics" src="https://static.igem.org/mediawiki/2016/3/3d/SymbiosisBGU2016.png" alt="">
 +
                        </div>
 +
                        <p>
 +
                            Next, we wanted to fully degrade the resulting monomers to CO2, this way no toxic molecules will remain as products of the degradation process. We decided to achieve this by genetic engineering of metabolic pathways of the soil bacterium <i>Pseudomonas putida</i> (<i>P. putida</i>). We plan to insert a degradation pathway for terephthalate into <i>P. putida</i> using genetic engineering, while the other monomer of PET, ethylene glycol, is utilized by <i>E. coli</i> that secretes our improved LC-Cutinase protein. The two bacteria will metabolize the two PET degradation products - leading to the conversion of PET to CO<sub>2</sub>. The terephthalate degradation pathway, derived from a strain of <i>Commamonas testosteroni</i> , terminates in protocatechuate, a toxic molecule for most bacteria, however, <i>P. putida</i>, is able to utilize it as a carbon source for its growth (Jimenez et al 2002). The ethylene glycol degradation pathway, present in our chosen <i>E. coli</i> strain, BL-21, supplies a carbon source for its growth while degrading PET to its respective monomers with LC-Cutinase.
 +
                            This way, we hope to achieve a full degradation of the two PET products and with it to drive the PET biocatalysis reaction by LC-Cutinase forward.
 +
                            We have chosen to work with <i>P. putida</i>, which is a gram-negative bacterium, for its diverse metabolism, including the ability to degrade organic solvents, especially protocatechuate, a toxic substance for most bacteria, its similarity to <i>E. coli</i> in most laboratory protocols and its electrochemical properties which allow it to be used in our fuel cell.
 +
                            Our goal is to genetically engineer <i>P. putida</i> so it will contain two plasmids which will encode for two essential components: a membrane transporter that will carry the terephthalate molecule into the cell and the necessary genes for its degradation.
 +
                            In order to achieve symbiosis between our two chosen bacterial species we have separated them using a dialysis membrane so that the <i>E. coli</i>, secreting the LC-Cutinase and utilizing ethylene glycol is enclosed and separated from the <i>P. putida</i> which is utilizing the terephthalic acid that diffuses out of the dialysis bag. Their mutual dependence depends on the fact that terephthalate will be the sole carbon source for <i>P. putida</i>'s growth, and cannot be generated in the absence of <i>E. coli</i> secreting LC-cutinase, while <i>E. coli</i> will not survive in elevated levels of terephthalate, that has to be degraded by <i>P. putida</i>, thus engineering a symbiotic dependence between the two bacterial species.
 +
                        </p>
 +
                        <div class="descTitle">
 +
                            <u>Bioelectrochemical PET Degradation System</u>
 +
                        </div>
 +
                        <div class="descPicWrapper">
 +
                            <img class="img-responsive longDescPics" src="https://static.igem.org/mediawiki/2016/f/f8/Fuel_dia_nobac_descBGU2016.png" alt="">
 +
                        </div>
 +
                        <p>
 +
                            Manufacturing PET from fossil fuels is an energy consuming process.
 +
                            In addition, current solutions for the disposal of PET, such as recycling and burying are also energy consuming as they require means such as transportation,
 +
                            sorting and initial processing. In order to offer a better alternative to the existing solutions we decided to explore options which would allow us to maintain a positive energy balance.
 +
                            Knowing our bacteria requires certain conditions to maintain viability, such as temperature,
 +
                            we knew we needed to supply them in ways that will maintain a positive energy balance.
 +
                            Since our bacterium of choice - <i>P. putida</i> is considered an exoelectrogen (i.e. bacteria that is able to respire its excess electrons through electrodes),
 +
                            and since PET is a polymer that contains a large amount of energy in its carbon-carbon bonds,
 +
                            excess energy released by our engineered <i>P. putida</i> from terephthalate degradation will be harnessed and utilized in a microbial fuel cell (MFC),
 +
                            leading to an efficient and energy producing, rather than consuming, degradation of PET.
 +
                            This energy can be utilized in a future device for the maintenance of growth conditions or the pretreatment of PET to render it easily degraded by the engineered bacteria.
 +
                        </p>
 +
                        <ol>
 +
                            <li>
 +
                                Sulaiman, S., You, D. J., Kanaya, E., Koga, Y., & Kanaya, S. (2014). Crystal structure and thermodynamic and kinetic stability of metagenome-derived LC-cutinase. Biochemistry, 53(11), 1858-1869.
 +
                            </li>
 +
                            <li>
 +
                                Goldenzweig, A., Goldsmith, M., Hill, S. E., Gertman, O., Laurino, P., Ashani, Y., ... & Lieberman, R. L. (2016). Automated Structure-and Sequence-Based Design of Proteins for High Bacterial Expression and Stability.ֲ Molecular Cell,63(2), 337-346.ג€
 +
                            </li>
 +
                            <li>
 +
                                Jimenez, J. I., Minambres, B., Garcia, J. L., & Diaz, E. (2002). Genomic analysis of the aromatic catabolic pathways from <i>Pseudomonas putida</i> KT2440. Environmental microbiology, 4(12), 824-841.
 +
                            </li>
 +
                        </ol>
 
                     </div>
 
                     </div>
 
                 </div>
 
                 </div>
 
             </div>
 
             </div>
 
         </div>
 
         </div>
        <a href="#" class="back-to-top"></a>
+
            <a href="#" class="back-to-top">
 +
            <img src='https://static.igem.org/mediawiki/2016/5/52/Arrow_for_site.png'>
 +
        </a>
 
         <script type = "text/javascript">
 
         <script type = "text/javascript">
 
             var amountScrolled = 50;
 
             var amountScrolled = 50;
Line 129: Line 174:
 
             });
 
             });
 
         </script>
 
         </script>
        <div class="container-fluid">
+
 
                <div class="row">
+
<div class="container-fluid">
                    <footer class="mainfooter">
+
            <div class="row footerColor">
                        <div class="row">
+
                <div class="col-lg-2"></div>
                            <div class="col-sm-4 text-center" >
+
                <div class="col-lg-4 text-center" >
                                <h4>Address:</h4>
+
                    <h4>Address:</h4>
                                <p>
+
                    <p>
                                    <b>
+
                        Ben-Gurion University of the Negev<br>
                                        Ben-Gurion University of the Negev<br>
+
                        Ben Gurion 1, Beer Sheva 8410501, Israel
                                        Ben Gurion 1, Beer Sheva 8410501, Israel
+
                    </p>
                                    </b>
+
                    <h5>
                                </p>
+
                        <b><u>Mail:</u></b> igembgu2016@gmail.com
                                <h5>
+
                    </h5>
                                    <b><u>Mail:</u> igembgu2016@gmail.com</b>
+
                </div>
                                </h5>
+
                <div class="col-lg-4 text-center">
                            </div>
+
                    <h4>Connect With Us!</h4>
                            <div class="col-sm-4 text-center">
+
                    <div class="row">
                                <h4>Connect With Us!</h4>
+
                        <div class="col-lg-3"></div>
                                <ul>
+
                        <div class="col-lg-6">
                                    <li>
+
                            <div class="row">
                                        <a href="https://www.facebook.com/iGEMBGU/?fref=ts" target="_blank"><img class="socialMediaIcon" src="https://static.igem.org/mediawiki/2016/7/7d/FacebookFlatIcon.png" alt="facebook"></a>
+
                                <div class="col-lg-4 socialWrapper">
                                    </li>
+
                                    <a href="https://www.facebook.com/iGEMBGU/?fref=ts" target="_blank"><img class="socialMediaIcon" src="https://static.igem.org/mediawiki/2016/7/7d/FacebookFlatIcon.png" alt="facebook"></a>
                                    <li>
+
                                </div>
                                        <a ><img class="socialMediaIcon" src="https://static.igem.org/mediawiki/2016/1/15/InstagramFlatIcon.png" alt="instagram"></a>
+
                                <div class="col-lg-4 socialWrapper">
                                    </li>
+
                                    <a href=""><img class="socialMediaIcon" src="https://static.igem.org/mediawiki/2016/1/15/InstagramFlatIcon.png" alt="instagram"></a>
                                    <li>
+
                                </div>
                                        <a href="https://twitter.com/igembgu2016" target="_blank"><img class="socialMediaIcon" src="https://static.igem.org/mediawiki/2016/3/34/TwitterFlatIcon.png" alt="twitter"></a>
+
                                <div class="col-lg-4 socialWrapper">
                                    </li>
+
                                    <a href="https://twitter.com/igembgu2016" target="_blank"><img class="socialMediaIcon" src="https://static.igem.org/mediawiki/2016/3/34/TwitterFlatIcon.png" alt="twitter"></a>
                                 </ul>
+
                                 </div>
                            </div>
+
                            <div class="col-sm-4 text-center">
+
                                <h4>CopyRights</h4>
+
 
                             </div>
 
                             </div>
 
                         </div>
 
                         </div>
                 
+
                    </div>
    </footer>
+
 
                 </div>
 
                 </div>
 
             </div>
 
             </div>
 
+
        </div>
  
 
</html>
 
</html>

Latest revision as of 14:39, 19 October 2016

PlastiCure

Description

Many date the invention of plastic by Alexander Parkes (Parkesine) as far as 1856, back then plastic was made almost entirely of cellulose, a natural substance found in plants. With the advancements made in the field of polymer chemistry during the 20th century, many new polymers were introduced into industry and are known to us today as Polystyrene, Polyethylene and Polyethylene terephthalate (PET). Plastic immediately gained popularity, being cheap, durable and easily molded into different solid shapes, and can be even used as an ink in 3D printers. However, one of its best features was found to be one of its greatest drawbacks, the durability of plastic makes it virtually non-degradable. An average bottle of mineral water takes roughly half a millennium to decompose, thus, leading to a global accumulation of plastic waste. Many ideas were considered in dealing with plastic waste such as burning plastic or burying it, but these solutions are considered damaging to the environment due to plastics toxicity. Since the introduction of plastics, some microbial communities or species have evolved to successfully degrade plastics, however, from an evolutionary point of view, probably due to the relatively short period of exposure to plastics, they are yet to be efficient in plastic biodegradation.

Our goal as the Ben-Gurion University IGEM team of 2016 is to overcome this evolutionary hurdle by devising several approaches using synthetic biology tools for efficient plastic biodegradation. In addition, we plan to utilize the high energy stored in PET molecules, for electricity production. In order to achieve that, the following research scheme has been devised:

A Protein Engineering Approach

We have decided to engineer the LC-Cutinase enzyme. LC-Cutinase is an enzyme discovered from an unknown organism in leaf-branch compost, and has been found to be one of the most efficient enzymes in breaking down PET polymers with relatively high crystallinity into degradable products, the monomers ethylene glycol and terephthalic acid. Based on the LC-Cutinase structure that was solved in 2014 (Sulaiman et al 2014), we have chosen to use a rational mutagenesis approach for its improvement. Using this approach, we made various mutations using an algorithm developed by Dr. Sarel Fleishman of the Weizmann Institute of Science (Goldenzweig et al. 2016). The algorithm compares the sequence of the original protein with that of other homologous proteins and then chooses a set of mutations. The algorithm then calculates the differences in free energy (ΔΔG) of each mutated variant compared to the free energy of the W.T. protein and selects for a library of variants that are thermodynamically stable. Using this algorithm, we received 4 different variants that we further tested for improvements in activity, stability and expression levels. In addition, the pelB leader sequence was fused to the enzyme in its N terminus and was expressed and secreted to the growth media of E. coli.

Genetic Engineering of Metabolic Pathways

Next, we wanted to fully degrade the resulting monomers to CO2, this way no toxic molecules will remain as products of the degradation process. We decided to achieve this by genetic engineering of metabolic pathways of the soil bacterium Pseudomonas putida (P. putida). We plan to insert a degradation pathway for terephthalate into P. putida using genetic engineering, while the other monomer of PET, ethylene glycol, is utilized by E. coli that secretes our improved LC-Cutinase protein. The two bacteria will metabolize the two PET degradation products - leading to the conversion of PET to CO2. The terephthalate degradation pathway, derived from a strain of Commamonas testosteroni , terminates in protocatechuate, a toxic molecule for most bacteria, however, P. putida, is able to utilize it as a carbon source for its growth (Jimenez et al 2002). The ethylene glycol degradation pathway, present in our chosen E. coli strain, BL-21, supplies a carbon source for its growth while degrading PET to its respective monomers with LC-Cutinase. This way, we hope to achieve a full degradation of the two PET products and with it to drive the PET biocatalysis reaction by LC-Cutinase forward. We have chosen to work with P. putida, which is a gram-negative bacterium, for its diverse metabolism, including the ability to degrade organic solvents, especially protocatechuate, a toxic substance for most bacteria, its similarity to E. coli in most laboratory protocols and its electrochemical properties which allow it to be used in our fuel cell. Our goal is to genetically engineer P. putida so it will contain two plasmids which will encode for two essential components: a membrane transporter that will carry the terephthalate molecule into the cell and the necessary genes for its degradation. In order to achieve symbiosis between our two chosen bacterial species we have separated them using a dialysis membrane so that the E. coli, secreting the LC-Cutinase and utilizing ethylene glycol is enclosed and separated from the P. putida which is utilizing the terephthalic acid that diffuses out of the dialysis bag. Their mutual dependence depends on the fact that terephthalate will be the sole carbon source for P. putida's growth, and cannot be generated in the absence of E. coli secreting LC-cutinase, while E. coli will not survive in elevated levels of terephthalate, that has to be degraded by P. putida, thus engineering a symbiotic dependence between the two bacterial species.

Bioelectrochemical PET Degradation System

Manufacturing PET from fossil fuels is an energy consuming process. In addition, current solutions for the disposal of PET, such as recycling and burying are also energy consuming as they require means such as transportation, sorting and initial processing. In order to offer a better alternative to the existing solutions we decided to explore options which would allow us to maintain a positive energy balance. Knowing our bacteria requires certain conditions to maintain viability, such as temperature, we knew we needed to supply them in ways that will maintain a positive energy balance. Since our bacterium of choice - P. putida is considered an exoelectrogen (i.e. bacteria that is able to respire its excess electrons through electrodes), and since PET is a polymer that contains a large amount of energy in its carbon-carbon bonds, excess energy released by our engineered P. putida from terephthalate degradation will be harnessed and utilized in a microbial fuel cell (MFC), leading to an efficient and energy producing, rather than consuming, degradation of PET. This energy can be utilized in a future device for the maintenance of growth conditions or the pretreatment of PET to render it easily degraded by the engineered bacteria.

  1. Sulaiman, S., You, D. J., Kanaya, E., Koga, Y., & Kanaya, S. (2014). Crystal structure and thermodynamic and kinetic stability of metagenome-derived LC-cutinase. Biochemistry, 53(11), 1858-1869.
  2. Goldenzweig, A., Goldsmith, M., Hill, S. E., Gertman, O., Laurino, P., Ashani, Y., ... & Lieberman, R. L. (2016). Automated Structure-and Sequence-Based Design of Proteins for High Bacterial Expression and Stability.ֲ Molecular Cell,63(2), 337-346.ג€
  3. Jimenez, J. I., Minambres, B., Garcia, J. L., & Diaz, E. (2002). Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida KT2440. Environmental microbiology, 4(12), 824-841.

Address:

Ben-Gurion University of the Negev
Ben Gurion 1, Beer Sheva 8410501, Israel

Mail: igembgu2016@gmail.com

Connect With Us!