Difference between revisions of "Team:TU Delft"

 
(33 intermediate revisions by 4 users not shown)
Line 1: Line 1:
 
{{:Team:TU_Delft/Header}}
 
{{:Team:TU_Delft/Header}}
 
<html>
 
<html>
 +
    <head>
 +
        <meta charset="utf-8">
 +
        <title>iGEM TU Delft</title>
 +
        <meta name="description" content="">
 +
        <meta name="viewport" content="width=device-width, initial-scale=1">
 +
    </head>
 
     <body id="delft">
 
     <body id="delft">
  
Line 23: Line 29:
  
 
                       <h2 class="carousel-title bounceInDown animated slow">TU Delft 2016</h2>
 
                       <h2 class="carousel-title bounceInDown animated slow">TU Delft 2016</h2>
                       <h4 class="carousel-subtitle bounceInUp animated slow ">Welcome to our wiki!</h4>
+
                       <h4 class="carousel-subtitle bounceInUp animated slow ">OPTICOLI</h4>
 +
                      <h5 class="carousel-subsubtitle bounceInUp animated slow">Producing biological lenses and lasers using synthetic biology</h5>
 +
 
  
 
                     </div> <!-- /.carousel-caption -->
 
                     </div> <!-- /.carousel-caption -->
Line 29: Line 37:
 
                   </div>
 
                   </div>
  
                 </div> <!-- /.item -->
+
                 </div> <!-- /.item --></a>
  
  
Line 39: Line 47:
 
         <div class="section-home about-us">
 
         <div class="section-home about-us">
  
                 <div class="col-md-2 col-sm-4">
+
                 <div class="col-md-2 col-sm-4 col-xs-6">
 
                     <div class="about-us-col">
 
                     <div class="about-us-col">
 
                         <div class="col-icon-wrapper">
 
                         <div class="col-icon-wrapper">
                             <a href="https://2016.igem.org/Team:TU_Delft/Project"><i class="fa fa-flask fa-5x"></i></a>
+
                             <a href="https://2016.igem.org/Team:TU_Delft/Project"><i class="fa fa-flask fa-5x"></i>
                             <h3 class="col-title">Project</h3>
+
                             <h3 class="col-title">Project</h3></a>
 
                         </div>                       
 
                         </div>                       
 
                     </div>
 
                     </div>
 
                 </div>
 
                 </div>
                 <div class="col-md-2 col-sm-4">
+
                 <div class="col-md-2 col-sm-4 col-xs-6">
 
                     <div class="about-us-col">
 
                     <div class="about-us-col">
 
                         <div class="col-icon-wrapper">
 
                         <div class="col-icon-wrapper">
                             <a href="https://2016.igem.org/Team:TU_Delft/Attributions#sponsors"><i class="fa fa-money fa-5x"></i></a>
+
                             <a href="https://2016.igem.org/Team:TU_Delft/Attributions#sponsors"><i class="fa fa-money fa-5x"></i>
                             <h3 class="col-title">Sponsors</h3>
+
                             <h3 class="col-title">Sponsors</h3></a>
 
                         </div>
 
                         </div>
 
                     </div>
 
                     </div>
 
                 </div>
 
                 </div>
                 <div class="col-md-2 col-sm-4">
+
                 <div class="col-md-2 col-sm-4 col-xs-6">
 
                     <div class="about-us-col">
 
                     <div class="about-us-col">
 
                         <div class="col-icon-wrapper">
 
                         <div class="col-icon-wrapper">
                           <a href="https://2016.igem.org/Team:TU_Delft/Modeling"><i class="fa fa-area-chart fa-5x"></i></a>
+
                           <a href="https://2016.igem.org/Team:TU_Delft/Model"><i class="fa fa-area-chart fa-5x"></i>
                           <h3 class="col-title">Modeling</h3>
+
                           <h3 class="col-title">Modeling</h3></a>
 
                         </div>
 
                         </div>
 
                     </div>
 
                     </div>
 
                 </div>
 
                 </div>
                 <div class="col-md-2 col-sm-4">
+
                 <div class="col-md-2 col-sm-4 col-xs-6">
 
                     <div class="about-us-col">
 
                     <div class="about-us-col">
                         <div class="col-icon-wrapper fa-spin-hover">
+
                         <div class="col-icon-wrapper ">
                             <a href="https://2016.igem.org/Team:TU_Delft/Hardware"><i class="fa fa-cog fa-5x"></i></a>
+
                             <a href="https://2016.igem.org/Team:TU_Delft/Hardware"><i class="fa fa-cog fa-spin-hover fa-5x"></i>
                             <h3 class="col-title">Hardware</h3>
+
                             <h3 class="col-title">Hardware</h3></a>
 
                         </div>
 
                         </div>
 
                     </div>
 
                     </div>
 
                 </div>
 
                 </div>
                 <div class="col-md-2 col-sm-4">
+
                 <div class="col-md-2 col-sm-4 col-xs-6">
 
                     <div class="about-us-col">
 
                     <div class="about-us-col">
 
                         <div class="col-icon-wrapper">
 
                         <div class="col-icon-wrapper">
                             <a href="https://2016.igem.org/Team:TU_Delft/Parts"><i class="fa fa-puzzle-piece fa-5x"></i></a>
+
                             <a href="https://2016.igem.org/Team:TU_Delft/Parts"><i class="fa fa-puzzle-piece fa-5x"></i>
                             <h3 class="col-title">Parts</h3>
+
                             <h3 class="col-title">Parts</h3></a>
 
                         </div>
 
                         </div>
 
                     </div>
 
                     </div>
 
                 </div>
 
                 </div>
                 <div class="col-md-2 col-sm-4">
+
                 <div class="col-md-2 col-sm-4 col-xs-6">
 
                     <div class="about-us-col">
 
                     <div class="about-us-col">
 
                         <div class="col-icon-wrapper">
 
                         <div class="col-icon-wrapper">
                             <a href="https://2016.igem.org/Team:TU_Delft/Practices"><i class="fa fa-users fa-5x"></i></a>
+
                             <a href="https://2016.igem.org/Team:TU_Delft/Practices"><i class="fa fa-users fa-5x"></i>
                             <h3 class="col-title">Practices</h3>
+
                             <h3 class="col-title">Practices</h3></a>
 
                         </div>
 
                         </div>
 
                     </div>
 
                     </div>
Line 89: Line 97:
 
             </div> <!-- /.about-us -->
 
             </div> <!-- /.about-us -->
 
         </div>
 
         </div>
 
        <div class="didyouknow">
 
            <img src="https://static.igem.org/mediawiki/2016/3/38/T--TU_Delft--DidYouKnow.png" alt="">
 
            <p style="font-family: Arial Black font-weight: 900">We use DNA from sponges to create a little glass-like layer around our cells.</p>                               
 
        </div>
 
 
 
 
         <div class="section-home home-reasons">
 
         <div class="section-home home-reasons">
 
 
             <div class="container">
 
             <div class="container">
 
 
                 <div class="row">
 
                 <div class="row">
 
+
                    <div class="col-md-12">
 +
                        <div class="reasons-col">
 +
                            <div class="reasons-titles">
 +
                                <h3 class="reasons-title">Producing biological lenses and lasers to improve microscopy</h3>
 +
                            </div>                 
 +
                            <div class="reasons-intro">
 +
                                <p>Microscopes have been around for hundreds of years and the technology behind these devices has been quickly developing over the past centuries. Microscopy has already helped us to image cells into great detail, which is essential for the identification of mechanisms behind diseases such as Alzheimer’s, of which we still don’t know the exact mechanism, but also for developing synthetic biology even further. In this age, the technology and knowledge of microscopy is no longer limiting for making detailed images of the cell; it’s the cells itself. When using fluorescence microscopy, a fluorescent cell only emits a limited number of photons, a part of this will not reach the detector. This year’s TU Delft team is using synthetic biology with the aim of improving fluorescence microscopy. There are two research lines: producing biological lenses and inventing a bacterial laser. <strong>Hover</strong> over the pictures underneath to find out more.</p>
 +
                            </div>
 +
                        </div>
 +
                    </div>
 +
                </div>
 +
                <div class="row">
 
                     <div class="col-md-6">
 
                     <div class="col-md-6">
 
 
                         <div class="reasons-col">
 
                         <div class="reasons-col">
 
 
                             <div class="reasons-titles">
 
                             <div class="reasons-titles">
 
+
                                 <h3 class="reasons-title">BIOLENSES</h3>
                                 <h3 class="reasons-title"><a href="https://2016.igem.org/Team:TU_Delft/Project#description">BIOLASERS</a></h3>
+
                                <h5 class="reason-subtitle"></h5>
+
 
+
 
                             </div>
 
                             </div>
 
+
                             <img src="https://static.igem.org/mediawiki/2016/5/50/T--TU_Delft--Lens_frontpage.png" alt="lenses">                  
                             <img src="https://static.igem.org/mediawiki/2016/b/bd/TU_Delft_frontlaser.png" alt="laser">
+
                             <div class="on-hover">
 
+
                                 <p>The goal of our <strong>biological microlenses</strong> is to increase the fraction of light captured by the detector of a microscope. Lenses are known to focus light onto a surface. By applying a layer of our biological microlenses on the detector of a microscope, we can increase the fraction of light captured. To produce microlenses, we expressed the enzyme <strong>silicatein</strong> in our cells, which catalyzes polymerization of silicic acid <a href="#references">(Cha et al., 1999)</a>. This results in a <strong>biosilica layer</strong> around the cell <a href="#references">(Muller et al., 2008)</a>, allowing the cell to function as a microlens. Since the shape of the lenses is a crucial property, we also overexpressed the gene <i>bolA</i> in our silica covered cells, which produces a round cell shape when overexpressed <a href="#references">(Aldea & Concha, 1988)</a>, to produce round lenses. Apart from using the lenses for microscopy, we can also use the lenses for improving the efficiency of solar panels, thin lightweight cameras with high resolution or 3D screens.</p>
 
+
                               
                             <div class="on-hover hidden-xs">
+
 
+
                                 <p> <strong>Imaging cells </strong>is essential for understanding life at the smallest scale and fighting cellular diseases like cancer. Imaging often relies on <strong>fluorescence</strong>, but fluorescent proteins have some drawbacks, such as their wide spectrum and low intensity.</p>
+
                                <p> Our <strong>biolasers</strong> will provide an accurate, safe and biological way to improve this.</p>
+
                                <p> Fluorescence is the ability of a molecule to take up the energy of a photon and release it again, which makes the molecule light up.<strong> Lasing</strong> works with the same principle as fluorescence, but now the light source is put between <strong>mirrors</strong>. The photons keep <strong>‘bouncing’</strong>, increasing the energy of the system. When the light gets a certain power, the photons can escape in the form of a laser beam.</p>
+
                                <p>A biolaser is achieved by trapping fluorescent proteins inside a <strong>reflective agent</strong>. We have chosen two reflective agents: bioglass (polysilicate) and bioplastic (PHB). By covering a cell with <strong>polysilicate</strong>, the photons can resonate inside the cell, making a whole-cell laser. The polysilicate is synthesized by an enzyme called <strong>silicatein</strong>, which is expressed on the cell wall by fusion to membrane proteins. By filling a cell with <strong>PHB</strong>, which forms intracellular granules, the photons can resonate inside a part of the cell, making an intracellular laser. The PHB is synthesized after expressing the pha-operon. By fusing the GFP to the PHB synthase, the GFP is relocated into the <strong>PHB granules</strong>.</p>                              
+
 
                             </div>
 
                             </div>
 
                         </div>
 
                         </div>
 
 
                     </div>
 
                     </div>
 
 
 
                     <div class="col-md-6">
 
                     <div class="col-md-6">
 
 
                         <div class="reasons-col">
 
                         <div class="reasons-col">
 
 
                             <div class="reasons-titles">
 
                             <div class="reasons-titles">
 
+
                                 <h3 class="reasons-title">BIOLASERS</h3>
                                 <h3 class="reasons-title"><a href="https://2016.igem.org/Team:TU_Delft/Project#description">BIOLENSES</a></h3>
+
                                <h5 class="reason-subtitle"></h5>
+
 
+
 
                             </div>
 
                             </div>
                             <img src="https://static.igem.org/mediawiki/2016/7/71/TU_Delft_frontlens.png" alt="lenses">                  
+
                             <img src="https://static.igem.org/mediawiki/2016/2/2a/T--TU_Delft--Laser_frontpage2.png" alt="laser">
 
+
                             <div class="on-hover">
                             <div class="on-hover hidden-xs">
+
                                 <p>By turning a cell into a <strong>biolaser</strong>, we will increase the light intensity emitted by the fluorescent cell. The cell will then emit more photons  without changing the fluorophore concentration. When more photons are emitted, more photons can be detected by the microscope. A laser works by resonating photons within a closed space, in this case a cell of E. coli. We approached this by expressing <strong>fluorescent proteins</strong> within our <strong>biosilica</strong>-covered cells we used for our biolenses. When exciting the fluorophores, a fraction of the photons are trapped inside the cell by the biosilica layer. When these photons meet other excited fluorescent proteins they cause them to emit a photon with the same wavelength and direction, this process is called <strong>‘stimulated emission’</strong> <a href="#references">(Einstein, A. 1917)</a> and results in light with a higher intensity and thus more emitted photons compared to conventional fluorescence.</p>
 
+
                                 <p><strong>Microlenses</strong> are an emerging field in technology and have a ton of applications, including high-tech cameras, chips, solar panels and research & imaging techniques. However, they are expensive, hard to fabricate and the production uses heavy chemicals and high temperatures, so it is bad for the <strong>environment</strong>. </p>
+
                                <p>Our biological microlens will be cheap, easy to make and environmentally friendly.</p>
+
                                <p>When we cover a cell with <strong>polysilicate</strong>, using the enzyme <strong>silicatein</strong>, we are able to make a biological microlens. By overexpressing either the transcriptional regulator bolA or the cell division inhibitor sulA we can play with cell <strong>morphology</strong> and investigate <strong>optical properties</strong>. These enlarged cells can also be used in the lasing experiments. The single cell will be able to diffract light as a <strong>single microlens</strong>. When we make a grid of lenses, a <strong>microlens array</strong>, we can use the lens for a coating for solar panels, thin lightweight cameras with high resolution or 3D screens.</p>                              
+
 
                             </div>
 
                             </div>
 
 
 
                         </div>
 
                         </div>
 
 
                     </div>
 
                     </div>
 
 
 
                 </div>
 
                 </div>
 
 
 
 
             </div>
 
             </div>
 
         </div>
 
         </div>
 
+
        <span class="anchor" id="references"></span>
 
+
        <div class="references container">
 
+
            <h4 class="footer-title">References</h4>
 +
            <ol>
 +
                <li>Aldea, M., & Concha, H. C. (1988). Identification, Cloning, and Expression of bolA, an ftsZ-Dependent Morphogene of Escherichia coli. <i>Journal of Bacteriology</i>.</li>
 +
                <li>Cha, J. N., Shimizu, K., Zhou, Y., Christiansen, S. C., Chmelka, B. F., Stucky, G. D., & Morse, D. E. (1999). Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro.<i> Biochemistry, 96</i>, 361–365.</li>
 +
<li>Einstein, A. (1917): "Zur Quantentheorie der Strahlung". <i>Physikalische Zeitschrift 18</i>, 121-128</li>
 +
                <li>Muller, W., Engel, S., Wang, X., Wolf, S., Tremel, W., Thakur, N., … Schrodel, H. (2008). Bioencapsulation of living bacteria (Escherichia coli) with poly(silicate) after transformation with silicatein-α gene. <i>Biomaterials</i>, 29(7), 771–779. http://doi.org/10.1016/j.biomaterials.2007.10.038</li>
 +
               
 +
            </ol>
 +
        </div>
 
         <!--  Scripts================================================== -->
 
         <!--  Scripts================================================== -->
  

Latest revision as of 21:56, 19 October 2016

iGEM TU Delft

Producing biological lenses and lasers to improve microscopy

Microscopes have been around for hundreds of years and the technology behind these devices has been quickly developing over the past centuries. Microscopy has already helped us to image cells into great detail, which is essential for the identification of mechanisms behind diseases such as Alzheimer’s, of which we still don’t know the exact mechanism, but also for developing synthetic biology even further. In this age, the technology and knowledge of microscopy is no longer limiting for making detailed images of the cell; it’s the cells itself. When using fluorescence microscopy, a fluorescent cell only emits a limited number of photons, a part of this will not reach the detector. This year’s TU Delft team is using synthetic biology with the aim of improving fluorescence microscopy. There are two research lines: producing biological lenses and inventing a bacterial laser. Hover over the pictures underneath to find out more.

BIOLENSES

lenses

The goal of our biological microlenses is to increase the fraction of light captured by the detector of a microscope. Lenses are known to focus light onto a surface. By applying a layer of our biological microlenses on the detector of a microscope, we can increase the fraction of light captured. To produce microlenses, we expressed the enzyme silicatein in our cells, which catalyzes polymerization of silicic acid (Cha et al., 1999). This results in a biosilica layer around the cell (Muller et al., 2008), allowing the cell to function as a microlens. Since the shape of the lenses is a crucial property, we also overexpressed the gene bolA in our silica covered cells, which produces a round cell shape when overexpressed (Aldea & Concha, 1988), to produce round lenses. Apart from using the lenses for microscopy, we can also use the lenses for improving the efficiency of solar panels, thin lightweight cameras with high resolution or 3D screens.

BIOLASERS

laser

By turning a cell into a biolaser, we will increase the light intensity emitted by the fluorescent cell. The cell will then emit more photons without changing the fluorophore concentration. When more photons are emitted, more photons can be detected by the microscope. A laser works by resonating photons within a closed space, in this case a cell of E. coli. We approached this by expressing fluorescent proteins within our biosilica-covered cells we used for our biolenses. When exciting the fluorophores, a fraction of the photons are trapped inside the cell by the biosilica layer. When these photons meet other excited fluorescent proteins they cause them to emit a photon with the same wavelength and direction, this process is called ‘stimulated emission’ (Einstein, A. 1917) and results in light with a higher intensity and thus more emitted photons compared to conventional fluorescence.

  1. Aldea, M., & Concha, H. C. (1988). Identification, Cloning, and Expression of bolA, an ftsZ-Dependent Morphogene of Escherichia coli. Journal of Bacteriology.
  2. Cha, J. N., Shimizu, K., Zhou, Y., Christiansen, S. C., Chmelka, B. F., Stucky, G. D., & Morse, D. E. (1999). Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Biochemistry, 96, 361–365.
  3. Einstein, A. (1917): "Zur Quantentheorie der Strahlung". Physikalische Zeitschrift 18, 121-128
  4. Muller, W., Engel, S., Wang, X., Wolf, S., Tremel, W., Thakur, N., … Schrodel, H. (2008). Bioencapsulation of living bacteria (Escherichia coli) with poly(silicate) after transformation with silicatein-α gene. Biomaterials, 29(7), 771–779. http://doi.org/10.1016/j.biomaterials.2007.10.038