Difference between revisions of "Team:TU Delft/"

 
(One intermediate revision by the same user not shown)
Line 30: Line 30:
 
                       <h2 class="carousel-title bounceInDown animated slow">TU Delft 2016</h2>
 
                       <h2 class="carousel-title bounceInDown animated slow">TU Delft 2016</h2>
 
                       <h4 class="carousel-subtitle bounceInUp animated slow ">OPTICOLI</h4>
 
                       <h4 class="carousel-subtitle bounceInUp animated slow ">OPTICOLI</h4>
                       <h5 class="carousel-subsubtitle bounceInUp animated slow">Producing bacterial lenses and lasers using synthetic biology</h5>
+
                       <h5 class="carousel-subsubtitle bounceInUp animated slow">Producing biological lenses and lasers using synthetic biology</h5>
  
  
Line 97: Line 97:
 
             </div> <!-- /.about-us -->
 
             </div> <!-- /.about-us -->
 
         </div>
 
         </div>
 
        <div class="didyouknow">
 
            <img src="https://static.igem.org/mediawiki/2016/3/38/T--TU_Delft--DidYouKnow.png" alt="">
 
            <p style="font-family: Arial Black font-weight: 900">We use DNA from sponges to create a little glass-like layer around our cells.</p>                               
 
        </div>
 
 
 
 
         <div class="section-home home-reasons">
 
         <div class="section-home home-reasons">
 
 
             <div class="container">
 
             <div class="container">
 
 
                 <div class="row">
 
                 <div class="row">
 
+
                    <div class="col-md-12">
 +
                        <div class="reasons-col">
 +
                            <div class="reasons-titles">
 +
                                <h3 class="reasons-title">Producing biological lenses and lasers to improve microscopy</h3>
 +
                            </div>                 
 +
                            <div class="reasons-intro">
 +
                                <p>Microscopes have been around for hundreds of years and the technology behind these devices has been quickly developing over the past centuries. Microscopy has already helped us to image cells into great detail, which is essential for the identification of mechanisms behind diseases such as Alzheimer’s, of which we still don’t know the exact mechanism, but also for developing synthetic biology even further. In this age, the technology and knowledge of microscopy is no longer limiting for making detailed images of the cell; it’s the cells itself. When using fluorescence microscopy, a fluorescent cell only emits a limited number of photons, a part of this will not reach the detector. This year’s TU Delft team is using synthetic biology with the aim of improving fluorescence microscopy. There are two research lines: producing biological lenses and inventing a bacterial laser. <strong>Hover</strong> over the pictures underneath to find out more.</p>
 +
                            </div>
 +
                        </div>
 +
                    </div>
 +
                </div>
 +
                <div class="row">
 
                     <div class="col-md-6">
 
                     <div class="col-md-6">
 
 
                         <div class="reasons-col">
 
                         <div class="reasons-col">
 
 
                             <div class="reasons-titles">
 
                             <div class="reasons-titles">
 
 
                                 <h3 class="reasons-title">BIOLENSES</h3>
 
                                 <h3 class="reasons-title">BIOLENSES</h3>
 
 
                             </div>
 
                             </div>
                             <img src="https://static.igem.org/mediawiki/2016/7/71/TU_Delft_frontlens.png" alt="lenses">                     
+
                             <img src="https://static.igem.org/mediawiki/2016/5/50/T--TU_Delft--Lens_frontpage.png" alt="lenses">                     
 
+
 
                             <div class="on-hover">
 
                             <div class="on-hover">
 
+
                                 <p>The goal of our <strong>biological microlenses</strong> is to increase the fraction of light captured by the detector of a microscope. Lenses are known to focus light onto a surface. By applying a layer of our biological microlenses on the detector of a microscope, we can increase the fraction of light captured. To produce microlenses, we expressed the enzyme <strong>silicatein</strong> in our cells, which catalyzes polymerization of silicic acid <a href="#references">(Cha et al., 1999)</a>. This results in a <strong>biosilica layer</strong> around the cell <a href="#references">(Muller et al., 2008)</a>, allowing the cell to function as a microlens. Since the shape of the lenses is a crucial property, we also overexpressed the gene <i>bolA</i> in our silica covered cells, which produces a round cell shape when overexpressed <a href="#references">(Aldea & Concha, 1988)</a>, to produce round lenses. Apart from using the lenses for microscopy, we can also use the lenses for improving the efficiency of solar panels, thin lightweight cameras with high resolution or 3D screens.</p>
                                 <p>The goal of our <strong>microlenses</strong> is to increase the fraction of light captured by solar cells and cameras. To produce microlenses, we expressed the enzyme <strong>silicatein</strong> in our engineered cells, which catalyzes polymerization of silicic acid <a href="https://2016.igem.org/Team:TU_Delft#references">(Cha et al., 1999)</a>. This resulted in a <strong>biosilica layer</strong> around the cell <a href="https://2016.igem.org/Team:TU_Delft#references">(MULLER et al., 2008)</a>. We also overexpressed the gene <i>bolA</i> in our silica covered cells, which produces a round cell shape when overexpressed <a href="https://2016.igem.org/Team:TU_Delft#references">(Aldea & Concha, 1988)</a>. Together this allows the cell to function as a microlens. When we make a grid of lenses, a <strong>microlens array</strong>, we can use the lens for a coating for solar panels, thin lightweight cameras with high resolution or 3D screens.</p>                                
+
                               
 
                             </div>
 
                             </div>
 
 
 
                         </div>
 
                         </div>
 
 
                     </div>
 
                     </div>
 
                     <div class="col-md-6">
 
                     <div class="col-md-6">
 
 
                         <div class="reasons-col">
 
                         <div class="reasons-col">
 
 
                             <div class="reasons-titles">
 
                             <div class="reasons-titles">
 
 
                                 <h3 class="reasons-title">BIOLASERS</h3>
 
                                 <h3 class="reasons-title">BIOLASERS</h3>
 
 
                             </div>
 
                             </div>
 
+
                             <img src="https://static.igem.org/mediawiki/2016/2/2a/T--TU_Delft--Laser_frontpage2.png" alt="laser">
                             <img src="https://static.igem.org/mediawiki/2016/b/bd/TU_Delft_frontlaser.png" alt="laser">
+
 
+
 
+
 
                             <div class="on-hover">
 
                             <div class="on-hover">
 
+
                                 <p>By turning a cell into a <strong>biolaser</strong>, we will increase the light intensity emitted by the fluorescent cell. The cell will then emit more photons  without changing the fluorophore concentration. When more photons are emitted, more photons can be detected by the microscope. A laser works by resonating photons within a closed space, in this case a cell of E. coli. We approached this by expressing <strong>fluorescent proteins</strong> within our <strong>biosilica</strong>-covered cells we used for our biolenses. When exciting the fluorophores, a fraction of the photons are trapped inside the cell by the biosilica layer. When these photons meet other excited fluorescent proteins they cause them to emit a photon with the same wavelength and direction, this process is called <strong>‘stimulated emission’</strong> <a href="#references">(Einstein, A. 1917)</a> and results in light with a higher intensity and thus more emitted photons compared to conventional fluorescence.</p>
                                 <p>The goal of our <strong>biolasers</strong> is to improve current imaging techniques by increasing the fluorescence output of the cells and by narrowing the wavelength spectrum of the light emitted by the cells. We did this by expressing <strong>fluorescent proteins</strong> within our <strong>biosilica</strong>-covered cells. When exciting the fluorophores, a fraction of the photons are trapped inside the cell by the biosilica layer. These photons excite other fluorescent proteins and <strong>stimulated emission</strong> occurs. This process results in light with a higher intensity and a narrower colour spectrum compared to conventional fluorescence.</p>                              
+
 
                             </div>
 
                             </div>
 
                         </div>
 
                         </div>
 
 
                     </div>
 
                     </div>
 
 
 
 
 
 
                 </div>
 
                 </div>
 
 
 
 
             </div>
 
             </div>
 
         </div>
 
         </div>
 
 
         <span class="anchor" id="references"></span>
 
         <span class="anchor" id="references"></span>
 
         <div class="references container">
 
         <div class="references container">
Line 168: Line 144:
 
                 <li>Aldea, M., & Concha, H. C. (1988). Identification, Cloning, and Expression of bolA, an ftsZ-Dependent Morphogene of Escherichia coli. <i>Journal of Bacteriology</i>.</li>
 
                 <li>Aldea, M., & Concha, H. C. (1988). Identification, Cloning, and Expression of bolA, an ftsZ-Dependent Morphogene of Escherichia coli. <i>Journal of Bacteriology</i>.</li>
 
                 <li>Cha, J. N., Shimizu, K., Zhou, Y., Christiansen, S. C., Chmelka, B. F., Stucky, G. D., & Morse, D. E. (1999). Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro.<i> Biochemistry, 96</i>, 361–365.</li>
 
                 <li>Cha, J. N., Shimizu, K., Zhou, Y., Christiansen, S. C., Chmelka, B. F., Stucky, G. D., & Morse, D. E. (1999). Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro.<i> Biochemistry, 96</i>, 361–365.</li>
                 <li>MULLER, W., ENGEL, S., WANG, X., WOLF, S., TREMEL, W., THAKUR, N., … SCHRODER, H. (2008). Bioencapsulation of living bacteria (Escherichia coli) with poly(silicate) after transformation with silicatein-α gene. <i>Biomaterials</i>, 29(7), 771–779. http://doi.org/10.1016/j.biomaterials.2007.10.038</li>
+
<li>Einstein, A. (1917): "Zur Quantentheorie der Strahlung". <i>Physikalische Zeitschrift 18</i>, 121-128</li>
 
+
                 <li>Muller, W., Engel, S., Wang, X., Wolf, S., Tremel, W., Thakur, N., … Schrodel, H. (2008). Bioencapsulation of living bacteria (Escherichia coli) with poly(silicate) after transformation with silicatein-α gene. <i>Biomaterials</i>, 29(7), 771–779. http://doi.org/10.1016/j.biomaterials.2007.10.038</li>
 +
               
 
             </ol>
 
             </ol>
 
         </div>
 
         </div>
 
 
         <!--  Scripts================================================== -->
 
         <!--  Scripts================================================== -->
  

Latest revision as of 21:57, 19 October 2016

iGEM TU Delft

Producing biological lenses and lasers to improve microscopy

Microscopes have been around for hundreds of years and the technology behind these devices has been quickly developing over the past centuries. Microscopy has already helped us to image cells into great detail, which is essential for the identification of mechanisms behind diseases such as Alzheimer’s, of which we still don’t know the exact mechanism, but also for developing synthetic biology even further. In this age, the technology and knowledge of microscopy is no longer limiting for making detailed images of the cell; it’s the cells itself. When using fluorescence microscopy, a fluorescent cell only emits a limited number of photons, a part of this will not reach the detector. This year’s TU Delft team is using synthetic biology with the aim of improving fluorescence microscopy. There are two research lines: producing biological lenses and inventing a bacterial laser. Hover over the pictures underneath to find out more.

BIOLENSES

lenses

The goal of our biological microlenses is to increase the fraction of light captured by the detector of a microscope. Lenses are known to focus light onto a surface. By applying a layer of our biological microlenses on the detector of a microscope, we can increase the fraction of light captured. To produce microlenses, we expressed the enzyme silicatein in our cells, which catalyzes polymerization of silicic acid (Cha et al., 1999). This results in a biosilica layer around the cell (Muller et al., 2008), allowing the cell to function as a microlens. Since the shape of the lenses is a crucial property, we also overexpressed the gene bolA in our silica covered cells, which produces a round cell shape when overexpressed (Aldea & Concha, 1988), to produce round lenses. Apart from using the lenses for microscopy, we can also use the lenses for improving the efficiency of solar panels, thin lightweight cameras with high resolution or 3D screens.

BIOLASERS

laser

By turning a cell into a biolaser, we will increase the light intensity emitted by the fluorescent cell. The cell will then emit more photons without changing the fluorophore concentration. When more photons are emitted, more photons can be detected by the microscope. A laser works by resonating photons within a closed space, in this case a cell of E. coli. We approached this by expressing fluorescent proteins within our biosilica-covered cells we used for our biolenses. When exciting the fluorophores, a fraction of the photons are trapped inside the cell by the biosilica layer. When these photons meet other excited fluorescent proteins they cause them to emit a photon with the same wavelength and direction, this process is called ‘stimulated emission’ (Einstein, A. 1917) and results in light with a higher intensity and thus more emitted photons compared to conventional fluorescence.

  1. Aldea, M., & Concha, H. C. (1988). Identification, Cloning, and Expression of bolA, an ftsZ-Dependent Morphogene of Escherichia coli. Journal of Bacteriology.
  2. Cha, J. N., Shimizu, K., Zhou, Y., Christiansen, S. C., Chmelka, B. F., Stucky, G. D., & Morse, D. E. (1999). Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Biochemistry, 96, 361–365.
  3. Einstein, A. (1917): "Zur Quantentheorie der Strahlung". Physikalische Zeitschrift 18, 121-128
  4. Muller, W., Engel, S., Wang, X., Wolf, S., Tremel, W., Thakur, N., … Schrodel, H. (2008). Bioencapsulation of living bacteria (Escherichia coli) with poly(silicate) after transformation with silicatein-α gene. Biomaterials, 29(7), 771–779. http://doi.org/10.1016/j.biomaterials.2007.10.038