Difference between revisions of "Team:William and Mary/Notebook"

Line 21: Line 21:
 
<div class="title">
 
<div class="title">
 
<h2 style='padding-top: 40px; font-family: "Verlag-Book"; font-size: 50px;'>
 
<h2 style='padding-top: 40px; font-family: "Verlag-Book"; font-size: 50px;'>
Description
+
Notebook
 
</h2>
 
</h2>
 
</div>
 
</div>
Line 29: Line 29:
 
  </div>
 
  </div>
 
</div>
 
</div>
+
 
<div class="section section-we-are-2">
+
<div class="text-area">
+
<div class="container">
+
<div class="row">
+
<div class="col-md-4">
+
<div class="title add-animation-stopped">
+
<p class='h2WM' style='padding-left:70px; padding-top: 0px;'>
+
Motivation
+
</p>
+
</div>
+
</div>
+
<div class="col-md-7 col-md-offset-1" style='padding-top: 0px;'>
+
<div class="description add-animation-stopped animation-1">
+
<p class='large' style="color:#A9A9A9;">
+
  Genetic circuits exist in great abundance in nature as complex metabolic pathways which interact
+
  in various ways to perform vital cellular processes. Synthetic biologists aim to not only understand
+
  naturally occurring circuit networks, but also to modify them or to conceptualize and build entirely
+
  new circuits.
+
</p>
+
</div>
+
</div>
+
<div class="description">
+
<p class='large' style="padding-left:70px;">
+
The inherent versatility of synthetic genetic circuitry has lead to a vast array of diverse applications
+
in countless fields. However, the field remains fundamentally limited by the magnitude and specificity of
+
behavioral control over genetic circuits and circuit networks. These limitations can be boiled down to two
+
essential problems: inherent constraints to behavior based on the nature of a circuit’s constituent genes,
+
and the inefficiency of the “design-build-test” cycle which is relied upon for the construction of effective
+
circuit models.
+
</p>
+
<p class='large' style="padding-left:70px;">
+
The fundamental constraints of integral circuit components limit the ability to design and construct
+
genetic circuits of arbitrary and highly specific behavior. When constructing a circuit with some intended
+
behavior, design is limited by the available input-specific regulators to gene expression and their
+
characteristic regulatory behavior. In order to achieve more precise behavioral control, the ability to
+
tune expression levels of regulatory elements to some desired level is vital. This limitation highlights
+
the need for genetic devices that can modify the behavior of arbitrary genetic circuits; implementing these
+
devices would enable precise behavioral control invariant to the constraints of the constituent genes that
+
make up the circuit in question [1].
+
</p>
+
<p class='large' style="padding-left:70px; padding-bottom:50px;">
+
The other foundational limitation of genetic circuit construction addresses the inefficiency and
+
unpredictability of the design and construction process itself. The progression from synthesizing parts
+
into a circuit on a plasmid, to transformation and testing in vivo, is a lengthy and expensive process
+
which furthermore is largely variable in terms of actual functionality of the final product [2].This often
+
leads to a series of trial-and-error testing cycles whose products maintain a persistent level of uncertainty
+
with regard to precise, predictable behavior. Although it is possible to achieve functional genetic circuits
+
in this capacity, greater problems arise regarding the tunability of the product. The success of any genetic
+
circuit relies on the ability to precisely tune a response to a range of input concentrations; it would therefore
+
be desirable to obtain a reliable method for tuning circuit response, ideally without the need to rewire the
+
internal workings of the circuit. This method would allow control over output expression to be implemented in
+
a more rapid and predictable manner [3].
+
</p>
+
</div>
+
<div class="col-md-4">
+
<div class="title add-animation-stopped">
+
<p class='h2WM' style='padding-left:70px;'>
+
The Project
+
</p>
+
</div>
+
</div>
+
<div class="col-md-7 col-md-offset-1" style='padding-top: 0px;'>
+
<div class="description add-animation-stopped animation-1">
+
<p class='large' style="color:#A9A9A9;">
+
Our project aims to provide a modular collection of genetic parts which can specifically and predictably
+
tune the behavior of an arbitrary genetic circuit. This collection, which we have dubbed the “Circuit
+
Control Toolbox,” consists of a suite of parts which can be added to the end of a given genetic circuit;
+
each part provides a specific and independently tunable response which allows direct control over the
+
ultimate output behavior of the circuit.
+
</p>
+
</div>
+
</div>
+
 
<div class="description">
 
<div class="description">
 
<p class='large' style="padding-left:70px;">
 
<p class='large' style="padding-left:70px;">
The overall input/output behavior of any genetic circuit can be represented by a graph known as a
+
Description of this page
transfer function, which relates concentration of input molecule to output protein expression.
+
Likewise, any modifications to the circuit affecting input/output behavior can be visualized by a
+
transformation of the transfer function representing the circuit. The Circuit Control Toolbox consists
+
of three distinct tools which prompt unique behavioral changes to the circuit’s output relative to its
+
input, and therefore generate different transformations of the circuit’s original transfer function.
+
 
</p>
 
</p>
 
</div>
 
</div>
Line 115: Line 38:
 
 
 
<!--WEEK-->
 
<!--WEEK-->
<p class='large' style="padding-left:70px; padding-bottom:50px;">
+
<p class='large' style="padding-left:70px; padding-bottom:30px;">
 
Week 1 (160529 – 160604)
 
Week 1 (160529 – 160604)
 
</p>
 
</p>
 
 
<p class='large' style="padding-left:70px; padding-bottom: 30px;">
+
<p class='large' style="padding-left:90px; padding-bottom: 10px;">
 
<b>✻</b> Resuspended parts from the kit.
 
<b>✻</b> Resuspended parts from the kit.
 
</p>
 
</p>
<p class='large' style="padding-left:70px; padding-bottom: 30px;">
+
<p class='large' style="padding-left:90px; padding-bottom: 10px;">
 
<b>✻</b> Resuspended gBlocks of ordered sequences.
 
<b>✻</b> Resuspended gBlocks of ordered sequences.
 
</p>
 
</p>
<p class='large' style="padding-left:70px; padding-bottom: 30px;">
+
<p class='large' style="padding-left:90px; padding-bottom: 10px;">
 
<b>✻</b> Created a functional UNS Standard Backbone, containing the UNS 2 and 3 sequences within the Prefix and Suffix.
 
<b>✻</b> Created a functional UNS Standard Backbone, containing the UNS 2 and 3 sequences within the Prefix and Suffix.
 
</p>
 
</p>
<p class='large' style="padding-left:70px; padding-bottom: 30px;">
+
<p class='large' style="padding-left:90px; padding-bottom: 10px;">
 
<b>✻</b> Cloned K2066001-K2066016 into UNS pSB1X3 Backbone.
 
<b>✻</b> Cloned K2066001-K2066016 into UNS pSB1X3 Backbone.
 
</p>
 
</p>
<p class='large' style="padding-left:70px; padding-bottom: 30px;">
+
<p class='large' style="padding-left:90px; padding-bottom: 10px;">
 
<b>✻</b> Performed Diagnostic PCRs to test primer design for Ribozyme / RiboJ Characterization subproject
 
<b>✻</b> Performed Diagnostic PCRs to test primer design for Ribozyme / RiboJ Characterization subproject
 
</p>
 
</p>
<p class='large' style="padding-left:70px; padding-bottom: 30px;">
+
<p class='large' style="padding-left:90px; padding-bottom: 10px;">
 
<b>✻</b> Transformed interlab devices, created glycerol stocks. Could not get IMP #1, #3, and (-) control to transform.  
 
<b>✻</b> Transformed interlab devices, created glycerol stocks. Could not get IMP #1, #3, and (-) control to transform.  
 
</p>
 
</p>
Line 140: Line 63:
 
 
 
<!--WEEK-->
 
<!--WEEK-->
<p class='large' style="padding-left:70px; padding-bottom:50px;">
+
<p class='large' style="padding-left:70px; padding-bottom:30px;">
 
Week 2 (160605 – 160611)
 
Week 2 (160605 – 160611)
 
</p>
 
</p>
 
 
<p class='large' style="padding-left:70px; padding-bottom: 30px;">
+
<p class='large' style="padding-left:90px; padding-bottom: 10px;">
 
<b>✻</b> Constructed K2066024, K2066025, and K2066027 using Gibson Assembly (from K2066014, K2066015, and pTAC templates).  
 
<b>✻</b> Constructed K2066024, K2066025, and K2066027 using Gibson Assembly (from K2066014, K2066015, and pTAC templates).  
 
</p>
 
</p>
<p class='large' style="padding-left:70px; padding-bottom: 30px;">
+
<p class='large' style="padding-left:90px; padding-bottom: 10px;">
 
<b>✻</b> We received training on the FACS (Fluorescence Activated Cell Sorter) Machine.  
 
<b>✻</b> We received training on the FACS (Fluorescence Activated Cell Sorter) Machine.  
 
</p>
 
</p>
<p class='large' style="padding-left:70px; padding-bottom: 30px;">
+
<p class='large' style="padding-left:90px; padding-bottom: 10px;">
 
<b>✻</b> Realized the need for repressor protein / fluorophore fusion proteins (LacI-mCherry, TetR-GFP, i.e.)
 
<b>✻</b> Realized the need for repressor protein / fluorophore fusion proteins (LacI-mCherry, TetR-GFP, i.e.)
 
</p>
 
</p>
<p class='large' style="padding-left:70px; padding-bottom: 30px;">
+
<p class='large' style="padding-left:90px; padding-bottom: 10px;">
 
<b>✻</b> Designed gBlocks of K2066028 and K2066029.  
 
<b>✻</b> Designed gBlocks of K2066028 and K2066029.  
 
</p>
 
</p>
<p class='large' style="padding-left:70px; padding-bottom: 30px;">
+
<p class='large' style="padding-left:90px; padding-bottom: 10px;">
 
<b>✻</b> Attempted to clone Addgene 240x TetO Sequence into UNS Standard Backbone.  
 
<b>✻</b> Attempted to clone Addgene 240x TetO Sequence into UNS Standard Backbone.  
 
</p>
 
</p>
<p class='large' style="padding-left:70px; padding-bottom: 30px;">
+
<p class='large' style="padding-left:90px; padding-bottom: 10px;">
 
<b>✻</b> Attempted ICA with K2066002, K2066003, K2066004 to create a TetO w/ 8bp spacer 9-mer
 
<b>✻</b> Attempted ICA with K2066002, K2066003, K2066004 to create a TetO w/ 8bp spacer 9-mer
 
</p>
 
</p>
<p class='large' style="padding-left:70px; padding-bottom: 30px;">
+
<p class='large' style="padding-left:90px; padding-bottom: 10px;">
 
<b>✻</b> Constructed K2066030 and K2066031 from K2066015.
 
<b>✻</b> Constructed K2066030 and K2066031 from K2066015.
 
</p>
 
</p>
<p class='large' style="padding-left:70px; padding-bottom: 30px;">
+
<p class='large' style="padding-left:90px; padding-bottom: 10px;">
 
<b>✻</b> Troubleshot ICA, attempted 6- and 12-mers of TetO w/ 8bp spacer.  
 
<b>✻</b> Troubleshot ICA, attempted 6- and 12-mers of TetO w/ 8bp spacer.  
 
</p>
 
</p>
<p class='large' style="padding-left:70px; padding-bottom: 30px;">
+
<p class='large' style="padding-left:90px; padding-bottom: 10px;">
 
<b>✻</b> Attempted IPTG Induction of K2066014 + K2066016 cotransformations.
 
<b>✻</b> Attempted IPTG Induction of K2066014 + K2066016 cotransformations.
 
</p>
 
</p>
 
</p>
 
</p>
<p class='large' style="padding-left:70px; padding-bottom: 30px;">
+
<p class='large' style="padding-left:90px; padding-bottom: 10px;">
 
<b>✻</b> Transformed remaining interlab devices, created glycerol stocks.
 
<b>✻</b> Transformed remaining interlab devices, created glycerol stocks.
 
</p>
 
</p>

Revision as of 22:04, 19 October 2016


...

Notebook

Description of this page

Week 1 (160529 – 160604)

Resuspended parts from the kit.

Resuspended gBlocks of ordered sequences.

Created a functional UNS Standard Backbone, containing the UNS 2 and 3 sequences within the Prefix and Suffix.

Cloned K2066001-K2066016 into UNS pSB1X3 Backbone.

Performed Diagnostic PCRs to test primer design for Ribozyme / RiboJ Characterization subproject

Transformed interlab devices, created glycerol stocks. Could not get IMP #1, #3, and (-) control to transform.

Week 2 (160605 – 160611)

Constructed K2066024, K2066025, and K2066027 using Gibson Assembly (from K2066014, K2066015, and pTAC templates).

We received training on the FACS (Fluorescence Activated Cell Sorter) Machine.

Realized the need for repressor protein / fluorophore fusion proteins (LacI-mCherry, TetR-GFP, i.e.)

Designed gBlocks of K2066028 and K2066029.

Attempted to clone Addgene 240x TetO Sequence into UNS Standard Backbone.

Attempted ICA with K2066002, K2066003, K2066004 to create a TetO w/ 8bp spacer 9-mer

Constructed K2066030 and K2066031 from K2066015.

Troubleshot ICA, attempted 6- and 12-mers of TetO w/ 8bp spacer.

Attempted IPTG Induction of K2066014 + K2066016 cotransformations.

Transformed remaining interlab devices, created glycerol stocks.