Difference between revisions of "Team:CGU Taiwan/Parts"

Line 214: Line 214:
  
  
<div class="mid" style="margin-left:50px;top:200px;background-color:white;">
+
<div class="mid" style="top:180px;">
In our 2016 iGEM project, immune and protein information searching is inevitably required. Therefore, McHug is a software platform that is created to arrange your data and search the protein infomation from several databases. We will output your data with a user-friendly interface and you can easily browse the results by submitting in a requested form. The concept of McHug software is originated from 2016 CGU iGEM group. We aim to test the potential of Leishmania to be a new vaccine adjuvant by carrying antigens directly into immune cells. The antigen peptides will be presented on MHCI or II molecules to activate T cells. Therefore, McHug is created to predict the peptides on MHC molecules and help to optimize the peptide presentation and T cell activation. Also, cloning efficiency is considered to be an important step of the experiment. We then expect that this platform and help us shorten the antigen sequence so that it can be more effective to subclone the shuttle vector. The major functions of McHug can be sorted into 3 parts:<br>
+
<br>
<span style="font-weight:bold;">1. Protein Structure</span><br>
+
<div style="font-size:60px;color:red;text-decoration:none;">
Protein structure can affect the possibility of being epitope. Peptides in strong structural sequences like alpha-helix have small chance to be antigenic determinant. On the other hand, sequences in loop structure tend to be recognized by the immune system, specifically by antibodies, B cells, or T cells. Here, McHug shows you the 3D structure of your protein and you can select the peptide sequence to be colored. In case you want to design an epitope sequence to generate antibodies, you can choose sequences on the protein surface in a visible way.<br>
+
Biobricks
<span style="font-weight:bold;">2. MHC Affinity Graphs</span><br>
+
Pathogenic proteins will be chopped into peptides and presented by MHC molecules to activate T cells. Therefore, the prediction of MHC affinity in your protein sequence can help you design your experiment. McHug is generated to arrange your numerical data into an easy understanding graph. We can show your IEDB prediction result in a trend chart. Also, users can enter the affinity threshold to curtail the signal in low-affinity position. Each affinity of amino acid in the chart stands for the nonamer starting from the specific amino acid position. Users can easily choose the high-affinity sequence and optimize their experiment.<br>
+
<span style="font-weight:bold;">3. Modification Sites</span><br>
+
McHug will provide you the basic information of protein modifications. Moreover, the modification sites will be shown correspondingly to the amino acid position of MHC affinity chart. With the information, users can twig the profile of the protein.<br>
+
<span style="font-weight:bold;">4. Conservation Level</span><br>
+
Protein conservation level will be given after BLASTing and multiple sequence aligning the submitted protein sequence. The outcome indicates the protein sequence conservation level between homologous protein sequences in different species. The conservation data will also be shown correspondingly to the amino acid position of MHC affinity chart. Users can choose the highly conserved peptide sequence to perform their experiment. In the project of CGU iGEM 2016, highly conserved region of pathogenic antigens sequence indicates a higher common share of pathogens. This can ensure the high coverage of the vaccine. (Future Work)<br>
+
 
</div>
 
</div>
 +
<br><br>
  
 +
<b>(1) Insert 5’HYG (BBa_K1955003), 3’UTR (BBa_K1955002), HA (BBa_K1955000) and OVA (BBa_K1955004) gBlocks into pSB1C3 vector:</b>
 +
<div style="color:black;text-decoration:none;font-size:18px;margin-left:70px;">
 +
The biobrick parts, including 5’HYG, 3’UTR, HA and OVA, were synthesized directly by IDT. After receiving the synthesized parts, we used EcoRI and PstI to digest the parts and pSB1C3 backbone, then ligated and transformed the DNA samples into DH5a competent cells. According to the digestion and colony PCR results of the colony, all the parts were inserted into the pSB1C3 vector with the right length of DNA sequences, 5’HYG is 1446 bp, HA is 1700 bp, OVA is 2098 bp and 3’UTR is 774 bp.<br>
 +
<img src="https://static.igem.org/mediawiki/2016/e/e9/CGU_Taiwan--bio5.jpg" width=550px height=300px style="border:2px black solid;border-radius:8px;"></img><br>
 +
(Fig. 1) pSB1C3-3’UTR, pSB1C3-5’HYG, pSB1C3-OVA checked by colony PCR and enzyme digestion
 +
<br>
 +
(A),(C) The pSB1C3-3’UTR and pSB1C3-OVA were transformed and the colonies were picked to perform colony PCR. The forward primer sequence was 5’- GAATTCGCGGCCGCTTCTAGAG-3’, which was in the prefix site. And the reverse primer sequence was 5’-CTGCAGCGGCCGCTACTAGTA-3’, which was in the suffix site. The PCR reaction was performed with Taq polymerase, and screened in 0.8% agarose gel by electrophoresis. As the results, a 700~800 bp sequence was proliferated in pSB1C3-3’UTR, and a 2000~2500 bp sequence was proliferated from pSB1C3-OVA. (B) The pSB1C3-5’HYG was transformed and the colonies were picked and amplified in LB broth. pSB1C3-5’HYG plasmid was purified by miniprep, and digested with EcoRI and PstI for 4 hrs, then screened in 0.8% agarose gel by electrophoresis. The results showed a 2000 bp band of pSB1C3 and the 1500 bp 5’HYG.<br>
 +
<img src="https://static.igem.org/mediawiki/2016/2/2d/CGU_Taiwan--bio6.jpg" width=450px height=200px style="border:2px black solid;border-radius:8px;"></img>
 +
(Fig. 2) The basic part checked by PCR
 +
<br>
 +
We used pSB1C3-5’HYG, pSB1C3-3’UTR, pSB1C3-HA, pSB1C3-OVA as template, to check the length of the inserts. The PCR reaction was performed with Taq polymerase, and screened in 0.8% agarose gel by electrophoresis.
 +
</div>
 +
<br><br>
  
 +
<b>(2) The construction of pSB1C3-HA-3’UTR and pSB1C3-OVA-3’UTR (BBa_K1955006):</b>
 +
<div style="color:black;text-decoration:none;font-size:18px;margin-left:70px;">
 +
The pSB1C3-3’UTR was digested with EcoRI and XbaI, then the pSB1C3-HA and pSB1C3-OVA were digested with EcoRI and SpeI. After the purifying step, the pSB1C3-3’UTR was ligated with HA and OVA, then transformed after 16℃ overnight. The colony were checked with colony PCR, as the results, the HA-3’UTR would be about 2.6 kb (1774 bp +774 bp), and the OVA-3’UTR would be about 2.9 kb (2098 bp +774 bp).<br>
 +
<img src="https://static.igem.org/mediawiki/2016/8/89/CGU_Taiwan--bio15.jpg" width=550px height=400px style="border:2px black solid;border-radius:8px;"></img>
 +
pSB1C3-HA-3’UTR and pSB1C3-OVA-3’UTR checked by colony PCR
 +
<br>
 +
The pSB1C3-HA-3’UTR and pSB1C3-OVA-3’UTR were transformed and the colonies were picked to perform colony PCR. The PCR reaction was performed with Taq polymerase, and screened in 0.8% agarose gel by electrophoresis. The 2600 bp HA-3’ UTR and 2900 bp OVA-3’UTR were proliferated from pSB1C3-HA-3’UTR and pSB1C3-OVA-3’UTR.
 +
</div>
 +
<br><br>
  
<div class="mid" style="margin-left:630px;top:200px;background-color:white;">
+
<b>(3) The construction of pSB1C3-5’HYG-HA-3’UTR (BBa_K1955005) and pSB1C3-5’HYG-OVA-3’UTR (BBa_K1955006) : </b>
Demo
+
<div style="color:black;text-decoration:none;font-size:18px;margin-left:70px;">
This demo clip was filmed to showcase how to use McHug software and explan the function of result page. The protein ID we used in this clip was OVA protein so that you can see the result of our targeting antigen. The ultimate goal of McHug platform is to integrate several protein databases and provide the users with easy-understanding illustrations. <br>
+
The pSB1C3-HA-3’UTR and pSB1C3-OVA-3’UTR were digested with EcoRI and XbaI, while the pSB1C3-5’UTR was digested with EcoRI and SpeI. The pSB1C3-HA-3’UTR, pSB1C3-OVA-3’UTR and 5’UTR were purified by gel extraction, and ligated together. After the transformation step, we used colony PCR to check the correctness of the plasmid. The results showed that the approximately 4100 bp long 5’HYG-HA-3’UTR (1446 bp +1700 bp + 774 bp) and 4500 bp 5’HYG-HA-3’UTR (1446 bp + 2098 bp+ 774 bp) could be amplified from the plasmid, meaning that the pSB1C3-HA-3’UTR, pSB1C3-OVA-3’UTR were finished in the step. In order to transfect the plasmid into leishmania by electroporation, we amplified the plasmid in 200 ml LB broth, and purified the DNA by midiprep.<br>
So far, we are able to show you protein 3D structure on the top of the interface. You can easily zoom in and zoom out to peek every part of your protein. And even select a partial peptide sequence. The peptide sequence in the protein will light up and reveal its position in the 3D structure. Moreover, MHC binding affinity and protein annotations are shown below. Amino acid positions are arranged correspondingly so that you can check all the information side by side. McHug 2016 also features the visualized interface which can transform loads of numerical data into legible charts and all basic protein information are integrated into a canvas penal at the buttom of the page.
+
<img src="https://static.igem.org/mediawiki/2016/1/1c/CGU_Taiwan--bio7.jpg" width=550px height=400px style="border:2px black solid;border-radius:8px;"></img>
 +
<br>
 +
pSB1C3-HA-3’UTR, pSB1C3-OVA-3’UTR checked by colony PCR
 +
<br>
 +
The pSB1C3-5’HYG-HA-3’UTR and pSB1C3-5’HYG-OVA-3’UTR were transformed and the colonies were picked to perform colony PCR. The PCR reaction was performed with Taq polymerase, and screened in 0.8% agarose gel by electrophoresis. The 4100 bp 5’HYG-HA-3’UTR and 4500 bp 5’HYG-OVA-3’UTR were amplified from pSB1C3-5’HYG-HA-3’UTR and pSB1C3-5’HYG-OVA-3’UTR.  
 
</div>
 
</div>
 +
<br><br>
 +
 +
<b>(4) Construction of pSB1C3-2300 intron (BBa_K1955001):</b>
 +
<div style="color:black;text-decoration:none;font-size:18px;margin-left:70px;">
 +
Since the 2300 bp intrinsic sequence contained too many CG pairs, it couldn’t be synthesized. We used point mutation to change the nucleotide in the 2300 bp sequence, therefore, the sequence would be separated into 3 parts, the first and the second part were about 400~450 bp and the third part was approximately 1500 bp in length. Through the PCR, we could have these 3 parts amplified from p6.5 plasmid. We used the PCR-after-ligation strategy, ligating the first and second part together and performed PCR to amplify the sequence. Next, ligated the part 1 +part 2 sequence with part 3, and amplify the ligated parts with PCR again. The reason why we used the PCR-after-ligation strategy was because the ligation rate of the sequence was really low. However, although the parts of 2300 intron could be proliferated by PCR, we were unable to ligate the 3 parts together. The sequencing results of the 2300 intron always lost the second part, no matter what strategy we used in the construction. So, it turned out that we couldn’t put the 2300 intrinsic region into the final construction of our shuttle vector.
 +
<br>
 +
<img src="https://static.igem.org/mediawiki/2016/6/6f/CGU_Taiwan--bio16.jpg" width=550px height=400px style="border:2px black solid;border-radius:8px;"></img>
 +
<br>
 +
All the parts of 2300 intron checked by PCR
 +
<br>
 +
The PCR reaction was performed with Taq polymerase, and screened in 0.8% agarose gel by electrophoresis. Lane A to lane C were the three parts of 2300 intron, the first part was 400 bp, the second part was about 450 bp, and the third part was 1500 bp. Lane D was the ligation of part 1 + part 2, which would be approximately 800 bp. Lane E was the ligation of all three parts, which would be 2.3 kb in length. However, the second part would always be lost during the construction.
 +
</div>
 +
<br><br>
 +
 +
<b>(5) Construction of pSB1C3-5’HYG-GFP-3’UTR (BBa_K1955007)</b>
 +
<div style="color:black;text-decoration:none;font-size:18px;margin-left:70px;">
 +
Since we can’t detect the HA and OVA protein by western blotting after the pSB1C3-5’HYG-HA-3’UTR and pSB1C3-5’HYG-OVA-3’UTR plasmid were transfected into leishmania. We decided to construct pSB1C3-5’HYG-GFP-3’UTR in order to prove if our leishmania shuttle vector could express the second protein or not. The GFP sequence came from BBa_E0040 in the vector pSB1A2.
 +
<br>
 +
The pSB1C3-3’UTR was digested with EcoRI and XbaI, The pSB1A2-GFP and pSB1C3-5’HYG were digested with EcoRI and SpeI. After the purification, the pSB1C3-3’UTR was ligated with GFP and 5’HYG successively, then transformed into DH5a. The colonies were checked by colony PCR. The right length of GFP-3’UTR should be approximately 1.5 kb (720 bp +774 bp), while the 5’HYG-GFP-3’UTR should be about 3 kb (1446 bp +720 bp +774 bp). As the result, we knew that all the colonies contained the correct plasmid after the construction. The right colony of pSB1C3-5’HYG-GFP-3’UTR was picked and amplified in 200 ml LB broth, then the plasmid DNA was purified by midiprep.<br>
 +
<img src="https://static.igem.org/mediawiki/2016/b/bf/CGU_Taiwan--bio2.jpg" width=550px height=400px style="border:2px black solid;border-radius:8px;"></img>
 +
<br>
 +
pSB1C3-GFP-3’UTR and pSB1C3-5’HYG-GFP-3’UTR check by colony PCR
 +
<br>
 +
The PCR was performed with Taq polymerase, and screened in 0.8% agarose gel by electrophoresis. The GFP-3’UTR was about 1.5 kb in length, and the 5’HYG-GFP-3’UTR was about 3 kb.
 +
</div>
 +
<br><br>
 +
  
  

Revision as of 22:35, 19 October 2016

Leijuvant


Biobricks


(1) Insert 5’HYG (BBa_K1955003), 3’UTR (BBa_K1955002), HA (BBa_K1955000) and OVA (BBa_K1955004) gBlocks into pSB1C3 vector:
The biobrick parts, including 5’HYG, 3’UTR, HA and OVA, were synthesized directly by IDT. After receiving the synthesized parts, we used EcoRI and PstI to digest the parts and pSB1C3 backbone, then ligated and transformed the DNA samples into DH5a competent cells. According to the digestion and colony PCR results of the colony, all the parts were inserted into the pSB1C3 vector with the right length of DNA sequences, 5’HYG is 1446 bp, HA is 1700 bp, OVA is 2098 bp and 3’UTR is 774 bp.

(Fig. 1) pSB1C3-3’UTR, pSB1C3-5’HYG, pSB1C3-OVA checked by colony PCR and enzyme digestion
(A),(C) The pSB1C3-3’UTR and pSB1C3-OVA were transformed and the colonies were picked to perform colony PCR. The forward primer sequence was 5’- GAATTCGCGGCCGCTTCTAGAG-3’, which was in the prefix site. And the reverse primer sequence was 5’-CTGCAGCGGCCGCTACTAGTA-3’, which was in the suffix site. The PCR reaction was performed with Taq polymerase, and screened in 0.8% agarose gel by electrophoresis. As the results, a 700~800 bp sequence was proliferated in pSB1C3-3’UTR, and a 2000~2500 bp sequence was proliferated from pSB1C3-OVA. (B) The pSB1C3-5’HYG was transformed and the colonies were picked and amplified in LB broth. pSB1C3-5’HYG plasmid was purified by miniprep, and digested with EcoRI and PstI for 4 hrs, then screened in 0.8% agarose gel by electrophoresis. The results showed a 2000 bp band of pSB1C3 and the 1500 bp 5’HYG.
(Fig. 2) The basic part checked by PCR
We used pSB1C3-5’HYG, pSB1C3-3’UTR, pSB1C3-HA, pSB1C3-OVA as template, to check the length of the inserts. The PCR reaction was performed with Taq polymerase, and screened in 0.8% agarose gel by electrophoresis.


(2) The construction of pSB1C3-HA-3’UTR and pSB1C3-OVA-3’UTR (BBa_K1955006):
The pSB1C3-3’UTR was digested with EcoRI and XbaI, then the pSB1C3-HA and pSB1C3-OVA were digested with EcoRI and SpeI. After the purifying step, the pSB1C3-3’UTR was ligated with HA and OVA, then transformed after 16℃ overnight. The colony were checked with colony PCR, as the results, the HA-3’UTR would be about 2.6 kb (1774 bp +774 bp), and the OVA-3’UTR would be about 2.9 kb (2098 bp +774 bp).
pSB1C3-HA-3’UTR and pSB1C3-OVA-3’UTR checked by colony PCR
The pSB1C3-HA-3’UTR and pSB1C3-OVA-3’UTR were transformed and the colonies were picked to perform colony PCR. The PCR reaction was performed with Taq polymerase, and screened in 0.8% agarose gel by electrophoresis. The 2600 bp HA-3’ UTR and 2900 bp OVA-3’UTR were proliferated from pSB1C3-HA-3’UTR and pSB1C3-OVA-3’UTR.


(3) The construction of pSB1C3-5’HYG-HA-3’UTR (BBa_K1955005) and pSB1C3-5’HYG-OVA-3’UTR (BBa_K1955006) :
The pSB1C3-HA-3’UTR and pSB1C3-OVA-3’UTR were digested with EcoRI and XbaI, while the pSB1C3-5’UTR was digested with EcoRI and SpeI. The pSB1C3-HA-3’UTR, pSB1C3-OVA-3’UTR and 5’UTR were purified by gel extraction, and ligated together. After the transformation step, we used colony PCR to check the correctness of the plasmid. The results showed that the approximately 4100 bp long 5’HYG-HA-3’UTR (1446 bp +1700 bp + 774 bp) and 4500 bp 5’HYG-HA-3’UTR (1446 bp + 2098 bp+ 774 bp) could be amplified from the plasmid, meaning that the pSB1C3-HA-3’UTR, pSB1C3-OVA-3’UTR were finished in the step. In order to transfect the plasmid into leishmania by electroporation, we amplified the plasmid in 200 ml LB broth, and purified the DNA by midiprep.

pSB1C3-HA-3’UTR, pSB1C3-OVA-3’UTR checked by colony PCR
The pSB1C3-5’HYG-HA-3’UTR and pSB1C3-5’HYG-OVA-3’UTR were transformed and the colonies were picked to perform colony PCR. The PCR reaction was performed with Taq polymerase, and screened in 0.8% agarose gel by electrophoresis. The 4100 bp 5’HYG-HA-3’UTR and 4500 bp 5’HYG-OVA-3’UTR were amplified from pSB1C3-5’HYG-HA-3’UTR and pSB1C3-5’HYG-OVA-3’UTR.


(4) Construction of pSB1C3-2300 intron (BBa_K1955001):
Since the 2300 bp intrinsic sequence contained too many CG pairs, it couldn’t be synthesized. We used point mutation to change the nucleotide in the 2300 bp sequence, therefore, the sequence would be separated into 3 parts, the first and the second part were about 400~450 bp and the third part was approximately 1500 bp in length. Through the PCR, we could have these 3 parts amplified from p6.5 plasmid. We used the PCR-after-ligation strategy, ligating the first and second part together and performed PCR to amplify the sequence. Next, ligated the part 1 +part 2 sequence with part 3, and amplify the ligated parts with PCR again. The reason why we used the PCR-after-ligation strategy was because the ligation rate of the sequence was really low. However, although the parts of 2300 intron could be proliferated by PCR, we were unable to ligate the 3 parts together. The sequencing results of the 2300 intron always lost the second part, no matter what strategy we used in the construction. So, it turned out that we couldn’t put the 2300 intrinsic region into the final construction of our shuttle vector.

All the parts of 2300 intron checked by PCR
The PCR reaction was performed with Taq polymerase, and screened in 0.8% agarose gel by electrophoresis. Lane A to lane C were the three parts of 2300 intron, the first part was 400 bp, the second part was about 450 bp, and the third part was 1500 bp. Lane D was the ligation of part 1 + part 2, which would be approximately 800 bp. Lane E was the ligation of all three parts, which would be 2.3 kb in length. However, the second part would always be lost during the construction.


(5) Construction of pSB1C3-5’HYG-GFP-3’UTR (BBa_K1955007)
Since we can’t detect the HA and OVA protein by western blotting after the pSB1C3-5’HYG-HA-3’UTR and pSB1C3-5’HYG-OVA-3’UTR plasmid were transfected into leishmania. We decided to construct pSB1C3-5’HYG-GFP-3’UTR in order to prove if our leishmania shuttle vector could express the second protein or not. The GFP sequence came from BBa_E0040 in the vector pSB1A2.
The pSB1C3-3’UTR was digested with EcoRI and XbaI, The pSB1A2-GFP and pSB1C3-5’HYG were digested with EcoRI and SpeI. After the purification, the pSB1C3-3’UTR was ligated with GFP and 5’HYG successively, then transformed into DH5a. The colonies were checked by colony PCR. The right length of GFP-3’UTR should be approximately 1.5 kb (720 bp +774 bp), while the 5’HYG-GFP-3’UTR should be about 3 kb (1446 bp +720 bp +774 bp). As the result, we knew that all the colonies contained the correct plasmid after the construction. The right colony of pSB1C3-5’HYG-GFP-3’UTR was picked and amplified in 200 ml LB broth, then the plasmid DNA was purified by midiprep.

pSB1C3-GFP-3’UTR and pSB1C3-5’HYG-GFP-3’UTR check by colony PCR
The PCR was performed with Taq polymerase, and screened in 0.8% agarose gel by electrophoresis. The GFP-3’UTR was about 1.5 kb in length, and the 5’HYG-GFP-3’UTR was about 3 kb.