Difference between revisions of "Team:Manchester/Description"

 
(30 intermediate revisions by 6 users not shown)
Line 4: Line 4:
  
 
<style>
 
<style>
 +
.mechanismm{
 +
    font-size:25px;
 +
    padding-left:130px;
 +
}
 +
 +
.mechanismm1{
 +
    font-size:25px;
 +
    padding-left:120px;
 +
}
 +
 +
.mectitle1{
 +
    font-size:40px;
 +
    color:orange;
 +
    text-shadow:  1px 1px yellow;
 +
    padding-left:120px;
 +
}
 +
 +
.mectitle{
 +
    font-size:40px;
 +
    color:orange;
 +
    text-shadow:  1px 1px yellow;
 +
    padding-bottom:20px;
 +
    padding-left:120px;
 +
}
 +
 +
.team90 h1{
 +
    line-height:140%;
 +
}
 +
 
div.info1{
 
div.info1{
 
     background: orange;
 
     background: orange;
Line 17: Line 46:
 
   font-size:40px;
 
   font-size:40px;
 
   color: gold;
 
   color: gold;
   text-align:left;
+
   text-align:center;
 
   margin:auto;
 
   margin:auto;
 
   padding-bottom:22px;
 
   padding-bottom:22px;
Line 26: Line 55:
 
     width:95%;
 
     width:95%;
 
     margin:auto;
 
     margin:auto;
 +
 
}
 
}
  
Line 68: Line 98:
  
 
.width80{
 
.width80{
     width:80%;
+
     width:70%;
 
}
 
}
  
 
.width90{
 
.width90{
     width: 90%;
+
     width: 80%;
 
}
 
}
  
Line 80: Line 110:
 
     .onethird_size, .twothird_size{width:100%}
 
     .onethird_size, .twothird_size{width:100%}
 
      
 
      
 +
}
 +
 +
@media screen and (max-width:800px){
 +
.team90 h1{
 +
    font-size: 20px;
 +
}
 +
.mechanismm, .mechanismm1, .mectitle, .mectitle1{padding:0;}
 
}
 
}
  
 
</style>
 
</style>
 
+
<br /><br />
  
 
<h1 class="title11">Project Overview </h1>
 
<h1 class="title11">Project Overview </h1>
 +
 +
<br /><br />
  
  
 
<div class="team90">
 
<div class="team90">
  
   <center>
+
   <left>
   <h1 style="font-size:25px"> Mechanism 1</h1>
+
   <h1 class="mechanismm"> Mechanism 1</h1>
   <h1 style="font-size:40px; color:orange; text-shadow: 1px 1px yellow; padding-bottom:20px;">Cell Free System</h1>
+
   <h1 class="mectitle">Cell Free System</h1>
   </center>
+
   </left>
 
   <br />
 
   <br />
  
Line 110: Line 149:
 
  <div class="column onethird_size">
 
  <div class="column onethird_size">
  
   <p style="font-size:18px;text-align:left">Enzymatic colorimetric assays are used to determine the concentration of a chemical in a solution by the conversion of a chromogen substrate into a coloured product. We have engineered <i>Escherichia coli</i> BL21 (DE3) strain to express AOx from <i>Pichia pastoris</i> that will then be used in a cell-free colorimetric system. This method involves the usage of alcohol oxidase (AOx) to oxidise ethanol producing hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) as a by-product. H<sub>2</sub>O<sub>2</sub> is used as an oxidising agent by horseradish peroxidase (HRP) to convert ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)) to produce the colour change <sup>[1]</sup>.
+
   <p style="font-size:18px;text-align:left">Enzymatic colourimetric assays are used to determine the concentration of a chemical in a solution by the conversion of a chromogen substrate into a coloured product. We have introduced a plasmid expressing recombinant Alcohol Oxidase 1 (<a href="http://parts.igem.org/Part:BBa_K2092000" target="_blank">AOx</a>) from <i>Pichia pastoris</i> into <i>Escherichia coli</i>  BL21 (DE3) strain that will then be used in the cell-free colorimetric system. This method involves the usage of AOx to oxidise ethanol, producing hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) as a by-product. H<sub>2</sub>O<sub>2</sub> is used as an oxidising agent by horseradish peroxidase (HRP) to convert ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)) to produce the colour change <sup>[1]</sup>.
 
   </p>
 
   </p>
  
Line 125: Line 164:
  
 
</div>
 
</div>
 
  
  
Line 140: Line 178:
  
  
  <center style="clear:both">
+
   <h1 class="mechanismm1" > Mechanism 2</h1>
   <h1 style="font-size:25px"> Mechanism 2</h1>
+
   <h1 class="mectitle1">Inducible Gene Switch</h1>
   <h1 style="font-size:40px; color:orange; text-shadow: 1px 1px yellow">Inducible Gene Switch</h1>
+
 
   </center>
+
   <br /><br />
  <br />
+
  
  
Line 155: Line 192:
 
<div class="info2">
 
<div class="info2">
 
<div class="column onethird_size">
 
<div class="column onethird_size">
   <p style="font-size: 18px;text-align:left">The <i>alc</i> gene expression system is one of the most reliable chemically inducible gene switches for use in plants and fungus.    This system relies on the ability of AlcR, a transcription factor, to bind to its target <i>alcA</i> promoter (alcA<sup>P</sup>). Based on this, we have engineered  <i>Escherichia coli</i> K-12 derivative DH5α and BL21 to induce expression of chromoproteins when AlcR binds to alcA<sup>P</sup> in the presence of ethanol <sup>[2]</sup>.  
+
   <p style="font-size: 18px;text-align:left">The <i>alc</i> gene expression system is one of the most reliable chemically inducible gene switches for use in plants <sup>[2]</sup> and fungus <sup>[3]</sup>.  
 +
   This system relies on the ability of <a href="http://parts.igem.org/Part:BBa_K2092001" target="_blank"> AlcR</a>, an alcohol-activated transcription factor, to bind to its target <i>alcA</i> promoter (<a href="http://parts.igem.org/Part:BBa_K2092002" target="_blank">P<i>alc</i>A</a>). Based on this, we have engineered  <i>E. coli</i> K-12 derivative DH5α and BL21 to induce expression of chromoproteins when AlcR binds to the native P<i>alc</i>A and variant of P<i>alc</i>A (<a href="http://parts.igem.org/Part:BBa_K2092003" target="_blank"> P<i>alc</i>A(var)</a>) in the presence of ethanol <sup>[4]</sup>.  
 
   </p>
 
   </p>
 
     <br /><br />
 
     <br /><br />
Line 170: Line 208:
 
<!------------------------------------------------Reference--------------------------------------------------------->
 
<!------------------------------------------------Reference--------------------------------------------------------->
 
<div class="box1"></div>
 
<div class="box1"></div>
 
+
<center>
 
<div class="referencediv">
 
<div class="referencediv">
 
   <h1 class="reference">References</h1>
 
   <h1 class="reference">References</h1>
Line 176: Line 214:
 
   <ul class="romanlist">
 
   <ul class="romanlist">
  
    <li>Azevedo, A. M., Prazeres, D. M. F., Cabral, J. M., & Fonseca, L. P. (2005). Ethanol biosensors based on alcohol oxidase. <i>Biosensors and Bioelectronics</i>,21(2), 235-247.
+
      <li style="text-align:left;"> Azevedo, A. M., Prazeres, D. M. F., Cabral, J. M., & Fonseca, L. P. (2005). Ethanol biosensors based on alcohol oxidase. <i>Biosensors and Bioelectronics</i>,21(2), 235-247.
 
     </li>
 
     </li>
     <li>Panozzo, C., Capuano, V., Fillinger, S. and Felenbok, B. (1997) ‘The zinc binuclear cluster Activator AlcR is able to bind to single sites but requires multiple repeated sites for synergistic activation of the alcA gene in Aspergillus nidulans’, <i>Journal of Biological Chemistry</i>, 272(36), pp. 22859–22865.  
+
<li style="text-align: left;;"> Plants: Kinkema, M., Geijskes, R.J., Shand, K., Coleman, H.D., De Lucca, P.C., Palupe, A., Harrison, M.D., Jepson, I., Dale, J.L. and Sainz, M.B. (2013). An improved chemically inducible gene switch that functions in the monocotyledonous plant sugar cane. Plant Molecular Biology, 84(4-5), 443–454.
 +
</li>
 +
     <li style="text-align: left;;"> Panozzo, C., Capuano, V., Fillinger, S. and Felenbok, B. (1997). The zinc binuclear cluster Activator AlcR is able to bind to single sites but requires multiple repeated sites for synergistic activation of the alcA gene in Aspergillus nidulans. <i>Journal of Biological Chemistry</i>, 272(36), pp. 22859–22865.  
 
     </li>
 
     </li>
 +
<li style="text-align: left;;"> Garoosi, A.G., Salter,M.G. , Caddick ,X.M and Tomsett, M.B. (2004). Characterization of the ethanol-inducible <i>alc</i> gene expression system in tomato. <i>Journal of experimental Botany</i>, 46 (416), pp. 1635-1642.
 +
</li>
 
   </ul>
 
   </ul>
  
 
</div>
 
</div>
 +
</center>
  
 +
</div>
  
 +
<div class="floatleft1 project1">
 +
<a class="projectlink" href="https://2016.igem.org/Team:Manchester"><< Main Page</a>
 
</div>
 
</div>
 +
 +
  
 
</html>
 
</html>
 
{{Manchester/CSS/footer}}
 
{{Manchester/CSS/footer}}

Latest revision as of 14:39, 24 November 2016

Manchester iGEM 2016


Project Overview



Mechanism 1

Cell Free System


Mechanism 2 overview diagram

Enzymatic colourimetric assays are used to determine the concentration of a chemical in a solution by the conversion of a chromogen substrate into a coloured product. We have introduced a plasmid expressing recombinant Alcohol Oxidase 1 (AOx) from Pichia pastoris into Escherichia coli BL21 (DE3) strain that will then be used in the cell-free colorimetric system. This method involves the usage of AOx to oxidise ethanol, producing hydrogen peroxide (H2O2) as a by-product. H2O2 is used as an oxidising agent by horseradish peroxidase (HRP) to convert ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)) to produce the colour change [1].






Mechanism 2

Inducible Gene Switch



Mechanism 2 overview diagram

The alc gene expression system is one of the most reliable chemically inducible gene switches for use in plants [2] and fungus [3]. This system relies on the ability of AlcR, an alcohol-activated transcription factor, to bind to its target alcA promoter (PalcA). Based on this, we have engineered E. coli K-12 derivative DH5α and BL21 to induce expression of chromoproteins when AlcR binds to the native PalcA and variant of PalcA ( PalcA(var)) in the presence of ethanol [4].



References

  • Azevedo, A. M., Prazeres, D. M. F., Cabral, J. M., & Fonseca, L. P. (2005). Ethanol biosensors based on alcohol oxidase. Biosensors and Bioelectronics,21(2), 235-247.
  • Plants: Kinkema, M., Geijskes, R.J., Shand, K., Coleman, H.D., De Lucca, P.C., Palupe, A., Harrison, M.D., Jepson, I., Dale, J.L. and Sainz, M.B. (2013). An improved chemically inducible gene switch that functions in the monocotyledonous plant sugar cane. Plant Molecular Biology, 84(4-5), 443–454.
  • Panozzo, C., Capuano, V., Fillinger, S. and Felenbok, B. (1997). The zinc binuclear cluster Activator AlcR is able to bind to single sites but requires multiple repeated sites for synergistic activation of the alcA gene in Aspergillus nidulans. Journal of Biological Chemistry, 272(36), pp. 22859–22865.
  • Garoosi, A.G., Salter,M.G. , Caddick ,X.M and Tomsett, M.B. (2004). Characterization of the ethanol-inducible alc gene expression system in tomato. Journal of experimental Botany, 46 (416), pp. 1635-1642.