Difference between revisions of "Team:OUC-China/Results"

Line 10: Line 10:
 
   <script type="text/javascript" src="https://2016.igem.org/Team:OUC-China/js/jquery?action=raw&amp;ctype=text/javascript"></script>
 
   <script type="text/javascript" src="https://2016.igem.org/Team:OUC-China/js/jquery?action=raw&amp;ctype=text/javascript"></script>
 
   <script type="text/javascript" src="https://2016.igem.org/Team:OUC-China/js/bootstrap?action=raw&amp;ctype=text/javascript"></script>
 
   <script type="text/javascript" src="https://2016.igem.org/Team:OUC-China/js/bootstrap?action=raw&amp;ctype=text/javascript"></script>
   <title>Proof</title>
+
   <title>Results</title>
 
<style type="text/css">
 
<style type="text/css">
 
         .banner-top{
 
         .banner-top{
Line 58: Line 58:
 
  scrolls()
 
  scrolls()
 
  function scrolls(){
 
  function scrolls(){
  var f1,f2,f3,bck;
+
  var f1,f2,f3,f4,f5,f6,bck;
 
  var fixRight = $('#myNav li');
 
  var fixRight = $('#myNav li');
 
  var blackTop = $('#BtnTop')
 
  var blackTop = $('#BtnTop')
Line 69: Line 69:
 
  f6 = $("#float06").offset().top;
 
  f6 = $("#float06").offset().top;
  
 
+
 
 
+
+
 
  if(sTop<=f2-100){
 
  if(sTop<=f2-100){
 
  blackTop.fadeOut(300).css('display','none')
 
  blackTop.fadeOut(300).css('display','none')
Line 78: Line 76:
 
  blackTop.fadeIn(300).css('display','block')
 
  blackTop.fadeIn(300).css('display','block')
 
  }
 
  }
   
+
  if(sTop>=fl){
 +
  fixRight.eq(0).addClass('active').siblings().removeClass('active');
 +
  }
 +
  if(sTop>=f2-100){
 +
  fixRight.eq(1).addClass('active').siblings().removeClass('active');
 +
  }
 +
  if(sTop>=f3-100){
 +
  fixRight.eq(2).addClass('active').siblings().removeClass('active');
 +
  }
 +
  if(sTop>=f4-100){
 +
  fixRight.eq(3).addClass('active').siblings().removeClass('active');
 +
  }
 +
  if(sTop>=f5-100){
 +
  fixRight.eq(4).addClass('active').siblings().removeClass('active');
 +
  }
 +
  if(sTop>=f6-100){
 +
  fixRight.eq(5).addClass('active').siblings().removeClass('active');
 +
  }  
  
 
 
Line 156: Line 171:
 
<div class="row">
 
<div class="row">
 
<div class="col-md-3" id="myScrollspy">
 
<div class="col-md-3" id="myScrollspy">
<ul class="nav nav-tabs nav-stacked" data-spy="affix" data-offset-top="225" data-offset-bottom="150" id="myNav">
+
<ul class="" data-spy="affix" data-offset-top="225" data-offset-bottom="150" id="myNav">
 
<li class="active"><a href="#float01">Overview</a></li>
 
<li class="active"><a href="#float01">Overview</a></li>
 
<li><a href="#float02">Preliminary experiments</a></li>
 
<li><a href="#float02">Preliminary experiments</a></li>
Line 164: Line 179:
 
<li><a href="#float06">Further verification</a></li>
 
<li><a href="#float06">Further verification</a></li>
 
<a id="BtnTop">
 
<a id="BtnTop">
<font style=" height:10px; display:block;"></font>
+
<img src="https://static.igem.org/mediawiki/2016/d/d2/T--OUC-China--btt.png" alt="Back to top">
<span>Btn Top</span>
+
 
</a>
 
</a>
 
</ul>
 
</ul>
Line 224: Line 238:
 
<img src="" width="" height="" alt="" />
 
<img src="" width="" height="" alt="" />
 
<p>The result are as follows:</p>
 
<p>The result are as follows:</p>
<p>[1] Carrier, T. A., & Keasling, J. D. (1997). Engineering mRNA stability in E. coli by the addition of synthetic hairpins using a 5′ cassette system.Biotechnology and bioengineering, 55(3), 577-580.<br>[2] Smolke, C. D., & Keasling, J. D. (2002). Effect of gene location, mRNA secondary structures, and RNase sites on expression of two genes in an engineered operon. Biotechnol Bioeng, 80(7), 762-776. doi: 10.1002/bit.10434<br>[3] Nojima, Takahiko, et al. "Controlling the expression ratio of two proteins by inserting a terminator between the two genes." Nucleic Acids Symposium Series. Vol. 50. No. 1. Oxford University Press, 2006.<br>[4] Nilsson, P., & Uhtin, B. E. (1991). Differential decay of a polycistronic Escherichia coli transcript is initiated by RNaseE‐dependent endonucleolytic processing. Molecular microbiology, 5(7), 1791-1799.</p>
+
<p style="font-size:16px;">[1] Carrier, T. A., & Keasling, J. D. (1997). Engineering mRNA stability in E. coli by the addition of synthetic hairpins using a 5′ cassette system.Biotechnology and bioengineering, 55(3), 577-580.<br>[2] Smolke, C. D., & Keasling, J. D. (2002). Effect of gene location, mRNA secondary structures, and RNase sites on expression of two genes in an engineered operon. Biotechnol Bioeng, 80(7), 762-776. doi: 10.1002/bit.10434<br>[3] Nojima, Takahiko, et al. "Controlling the expression ratio of two proteins by inserting a terminator between the two genes." Nucleic Acids Symposium Series. Vol. 50. No. 1. Oxford University Press, 2006.<br>[4] Nilsson, P., & Uhtin, B. E. (1991). Differential decay of a polycistronic Escherichia coli transcript is initiated by RNaseE‐dependent endonucleolytic processing. Molecular microbiology, 5(7), 1791-1799.</p>
<br /><br />
+
 
<br />
 
<br />
 
</div>
 
</div>
Line 235: Line 248:
 
<div class="col-md-1"></div>
 
<div class="col-md-1"></div>
 
<div class="col-md-5">
 
<div class="col-md-5">
<h3>About:</h3>
+
<h3>Thanks</h3>
 
<br>
 
<br>
<p>Thanks to:<img src="https://static.igem.org/mediawiki/2016/5/57/T--OUC-China--foot1.jpg"alt="Qingdao Institute of Bioenergy and Bioprocess Technology,Chinese Academy of Sciences"><img src="https://static.igem.org/mediawiki/2016/f/f0/T--OUC-China--foot2.jpg"alt="Biolabs"></p>
+
<p><b>1.</b>Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences</p>
<p>Designed and built by @ Jasmine Chen and @ Zexin Jiao</p>
+
<p><b>2.</b>NEW ENGLAND Biolabs</p>
<p>Code licensed under Apache License v4.0</p>
+
 
</div>
 
</div>
<div class="col-md-1"></div>
+
<div class="col-md-5 Contact">
<div class="col-md-5">
+
 
<h3>Contact us:</h3>
 
<h3>Contact us:</h3>
 
<br>
 
<br>
<p>E-mail: oucigem@163.com</p>
+
<p><b>E-mail</b>: oucigem@163.com</p>
<p>Follow us on Facebook@ iGEM OUC<img src="https://static.igem.org/mediawiki/2016/9/94/T--OUC-China--foot3.png" alt="Facebook"></p>
+
<p><b>Designed and built</b> by @ Jasmine Chen and @ Zexin Jiao</p>
<p>Find us on Google Map</p>
+
<p>We are OUC-iGEM
<p>We are OUC-iGEM<img src="https://static.igem.org/mediawiki/2016/5/58/T--OUC-China--foot4.png" alt="logo-one"><img src="https://static.igem.org/mediawiki/2016/9/9b/T--OUC-China--foot5.png" alt="logo-two"></p>
+
<img src="https://static.igem.org/mediawiki/2016/5/58/T--OUC-China--foot4.png" width="70" height="70" alt="logo-one">
 +
<img src="https://static.igem.org/mediawiki/2016/9/9b/T--OUC-China--foot5.png" width="70" height="70" alt="logo-two">
 +
</p>
 
</div>
 
</div>
 
</div>
 
</div>
<div id="" class="oucBottom">
+
<div class="oucBottom">
 
</div>
 
</div>
 
</div>
 
</div>

Revision as of 04:00, 17 October 2016

Results

project-banner


iconOVERVIEWicon


To explore this novel regulation method, we have several steps to go:
1. Employed preliminary experiment to test if the differential expression is caused by stem loop.
2. Predicted the protection effect using the native stem loops.
3. Tested the difference between the native and the designed stem loops.
4. Validated the primary relationship of free energy and quantitative expression using designed stem loops with gradient free energy.
5. Further we tested our result in the tri-fluorescent reporter system.



iconPRELIMINARY EXPERIMENTSicon


Stem loops and Terminators

To achieve differentiated expression between up and down stream genes within a polycistron, we need to find out the mechanism that causes the difference. Is it caused by stem-loops? How does it realize? Is it caused by protecting the upstream gene,or by decreasing the downstream one just like terminators?

Escherichia coli rho-independent transcription terminators are characterized by an RNA structure with a GC-rich stem-loop followed by a series of uridine residues, which is exactly similar to our designed stem loops. However, it is supposed that our designed stem loops work through interfering in the degrading process by resisting to the exoribonuclease instead of terminating the downstream gene. Thus, we constructed circuits to test if the expression of the downstream gene was reduced owing to the stem loops. We inserted a stem loop between two reporters contrast to the control one without stem loops in the intergenic region. Then we measured the reporting proteins both on the mRNA and the protein level. The result are as follows:

Figure 3: The figure shows the fluorescent of downstream mCherry in the circuit with or without stem-loop, and there’s no significant difference between them(P=0.01). Error bars indicate s.d. of mean of all sequences.

Gene sequence

We aimed to develop this regulation method into a toolkit that can be applied to other polycistrons, not only the dual-fluorescent system. So we had to make sure that the dual-fluorescent reporter system we constructed didn’t influence our result. In other words, it was the stem-loop itself that generate this kind difference. So we swapped the location of GFP and mCherry and constructed the following circuit to test it.



iconNATIVE STEM LOOPSicon


It is reported that there are several native stem loops that may have effects on its flanking genes, either at the 3’ termini or the 5’ termini[1]. Ergo, we use two native stem loops from R. capsulatus and E.coli[2] with different free energy to preliminary verify that stem loops in the intergenic region can regulate the relative expression of two reporter genes within polycistrons.

Figure 7: The protein fluorescence of upstream GFP to downstream mCherry of different circuits, background subtraction has been normalized with control group.Ratio = {[RFPterm/GFPterm]/[(RFPcontrol/GFPcontrol)mean][3]



iconNATIVE VS DESIGNED STEM-LOOPSicon


By using the native stem loop, we have confirmed that in E.coli, the stem loop at the 3’termini can indeed influence the quantitative expression of its upstream gene. Next we aimed to design nonnative stem loops to verify the precise correlation between the △G and the quantitative expression. But only if this mechanism is determined by △G can we design the stem-loops quantitatively. Thus we need to explore whether the protecting efficiency of the stem loops is determined by its Gibbs free energy or by other factors such as certain specific sequence.

Then we designed 3 stem loops that have the same free energy as a native one (△G=-38.7kcal/mol)[4] but with different base sequence and measured their relative expression of the up and down stream genes on protein and mRNA level.



iconTHE PRECISE CORRELATIONicon


We designed a series of stem loops of gradient free energy to explore the relationship between free energy and quantitative expression. And measured the relative expression of the up and down stream genes on both mRNA and protein level. The result are as follows:



iconFURTHER VERIFICATIONicon


After we got the relationship between free energy and quantitative expression, we wanted to test our result in the tri-fluorescent reporter system.and we constructed the tri-fluorescent reporter system as follows:

The result are as follows:

[1] Carrier, T. A., & Keasling, J. D. (1997). Engineering mRNA stability in E. coli by the addition of synthetic hairpins using a 5′ cassette system.Biotechnology and bioengineering, 55(3), 577-580.
[2] Smolke, C. D., & Keasling, J. D. (2002). Effect of gene location, mRNA secondary structures, and RNase sites on expression of two genes in an engineered operon. Biotechnol Bioeng, 80(7), 762-776. doi: 10.1002/bit.10434
[3] Nojima, Takahiko, et al. "Controlling the expression ratio of two proteins by inserting a terminator between the two genes." Nucleic Acids Symposium Series. Vol. 50. No. 1. Oxford University Press, 2006.
[4] Nilsson, P., & Uhtin, B. E. (1991). Differential decay of a polycistronic Escherichia coli transcript is initiated by RNaseE‐dependent endonucleolytic processing. Molecular microbiology, 5(7), 1791-1799.


Cistrons Concerto

Thanks


1.Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences

2.NEW ENGLAND Biolabs

Contact us:


E-mail: oucigem@163.com

Designed and built by @ Jasmine Chen and @ Zexin Jiao

We are OUC-iGEM logo-one logo-two