Difference between revisions of "Team:TU Delft/Practices"

Line 1,205: Line 1,205:
 
                                 </div>
 
                                 </div>
 
                             </div>
 
                             </div>
 +
</div>
 +
</div>
 +
</div>
  
 
                         <div class="panel panel-default">
 
                         <div class="panel panel-default">

Revision as of 20:03, 16 October 2016

iGEM TU Delft

Practices

Overview

A major goal of iGEM is to promote responsibility in the use of diverse synthetic biology technologies. We believe that in order to develop products or applications in a responsible manner, one needs to envision how a product or idea could be practically applied to the real world. It is critical to evaluate the potential influence and implications of a project, whether they could be negative or positive. We therefore present in this section how we sought to do this exercise for our project. We have explored the related perspectives and opportunities, as well as intensively analysed the risks. We discussed with different experts about how we could improve our projects utility and visited various conferences and events to talk with the public about our project. Furthermore, we performed an extensive product and application analysis and which resulted in a detailed a business plan for one of our proposed applications. Finally, we have additionally analysed the context and potential scenarios in which we are operating.

Moreover, our team greatly values being part of the diverse and international iGEM community. We believe that iGEM strongly contributes in the development of synthetic biology, and have studied how its influence, potential and practice could be expanded . Therefore, we have written an analysis about iGEM with recommendations that can be used by, for example, the iGEM headquarters to optimize the potential of iGEM even more. For example, our complete analysis includes recommendations such as increased external collaborations between teams and the introduction of a biosafety-focused track.

  • Product analysis
    Our project can be transformed into multiple applications. Here we explore and analyse the different potential real-life applications of our developed technologies.
  • Safety analysis
    Our project could carry multiple risks that are important to identify and minimize, before transforming it into real life applications. Therefore, we have done an extensive safety analysis, were we have looked into the potential safety risks for us, as iGEM team in the lab, but also the risks for, for example, potential users and the environment when our product leaves the lab. We have determined the likelihood and the impact of risks and we have used a risk matrix to visualize the risks
  • Safety tool
    While doing the safety analysis of our own project, we took inspiration from the way risks are systematically analysed in other research disciplines. It appears that in many disciplines, such as aerospace engineering, but also chemically engineering, risk analysis is done in a more standardized manner. Therefore, we have decided to develop and easy safety analysis tool that we hope other iGEM teams (or research groups) could use as a standard to evaluate the safety risks associated with their project.
  • Experts’ Opinion
    It is important for us to understand the context of the industries in which our technologies could potentially operate. For that purpose, we decided to meet and discuss with different experts from our field of research, including physicists, experts in the field of imaging techniques or safety. Our conversations helped us improving our project significantly. For example, physicists have helped us to understand the physics behind our project and improve our models therefore, and because uniformity was important for many potential applications with microlenses, we decided to alter the cell shape to spherical.
  • Business plan
    One of the potential applications of our project, is the use of biological micro lenses for the development of novel for solar panels. The efficiency of solar panels can be increased by using an encapsulation layer of microlenses which result in more light capturing. We focused on this application to develop an business plan. Our plan was based on an extensive customer analysis, which helped us identifying customers’ special needs and requests.
  • Analysis about iGEM
    We believe that iGEM has proven its added value to the synthetic biology world. However, we also think that there are always ways to optimize the potential of iGEM even more. Therefore, we have written an analysis about iGEM with many recommendations about, for example, new medal requirements and possibilities to increase scientific impact of iGEM further.
  • Toolbox page
    Based on the analysis we concluded that it would be useful to have a webpage that lists a selection of interesting tools that could be useful for the iGEM community, such as educational card games and tools that can be used in the lab. Our site can be used as a starting point to build an extensive Toolbox iGEM page.
  • Outreach and Conferences
    It is crucial to communicate the public about the potential benefits and risks of our project, and especially in our case about the importance of improving imaging techniques. Also we wanted to learn about our projects’ public perception . Here we compile of different efforts to reach out to the public, visiting multiple event and congresses, as well as organizing workshops.

Product analysis

The goal of our project was in the first place to improve imaging techniques and in that way improve the microscope. For this we have used microlenses which make it possible to capture the light more efficiently. However, there are a lot of other applications where light capturing also appears to be a limiting factor. In this section we will give a summary of three of the potential applications in which our microlenses also could be used.

Solar panels

solar panel
Solar panel with a microlens array (Xie et.al.,2015)

Most people agree that to curb global warming and to prevent shortage, a variety of measures needs to be taken. Probably the best response to the growing energy problem is to switch to renewable energy sources. Renewable energy is collected from resources which are naturally replenished on a human timescale, such as sunlight, wind, rain, tides, waves, and geothermal heat. Since in less than an hour, the theoretical potential of the sun represents more energy striking the earth’s surface than worldwide energy consumption in one year, this is considered to be the most promising renewable energy source (Crabtree, 2006). Solar panels would therefore be a perfect solutions to solve the energy problem. However, the efficiency of solar panels is still very low nowadays and has to be increased to make them profitable. One promising finding is the use of microlens arrays (MLAs). It is already proven that the use of a MLA as an encapsulation layer for the solar panels results in 20% to 50% increase of the efficiency (Jutteau, Paire, Proise, Lombez, & Guillemoles, 2015; Nam, Kim, Lee, Yang, & Lee, 2013). However, the production of these MLAs is still relatively expensive and especially very environmental unfriendly (Nam et al., 2013). Therefore, economically it is not favorable to use MLAs at the moment and perhaps even more important for us, it does not fit the idea about environmentally friendly solar panels. After all, the production is very environmentally unfriendly.

Our biologically produced microlenses can form a solution for this problem, The biologically produced microlens is an extremely small lens that can be used to make environmentally-friendly and eventually cheaper microlens arrays. The biological MLA as encapsulation layer will therefore result in more efficient and more environmental friendly solar panels.

Cameras

cameras
Schematic representation of light field imaging (Lytro, 2015)

Both camera manufacturers Nikon and Olympus told us that light capturing becomes a more and more limiting factor in the camera industry. Especially for high-speed-imaging and low-light-imaging the hardware is very developed, but they cannot improve techniques even further because of the inability to capture enough light. Microlens arrays could provide a solution to this problem.

Also research is done into the use of micro lenses to produce light weight camera’s that can be used in for example smartphones. For smartphones it is important that the cameras are both lightweight and have a high resolution. Microlenses could be to create both light weight and high resolution cameras, according to Nikon.

Microlens can also be used to achieve light field photography. The LightField is defined as all the lightrays at every point in space travelling in every direction. It is essentially 4D data, because every point in three-dimensional space is also attributed a direction. Where normal cameras only can record a two-dimensional representation of a scene, LightField cameras have a microlens array just in front of the imaging sensor. In this way the lenses will be split up what would have become a 2D-pixel into individual light rays just before reaching the sensor. With the help of sophisticated software, all these tiny images can be combined to sharp 3D model of the scene. Lytro is one of the first companies that is already working on consumable light field cameras with microlenses (Nolf, 2016).

According to Nikon, another possibility to use microlenses is when you want to focus multiple focal planes at the same time. This means that you can focus upon different points that are not at the same height (z-direction). Regular camaras or microscopes can only focus upon one height at the same time.

For the last two options, it is important that the microlenses have always exactly the same properties. This means that they always should have the same size and the same optical properties. A FACS scanner could probably be used to do detect the cells with certain properties. However, more research is required to make this possible. For the applications were the goal is purely to capture more light, it is not necessarily a requirement that every microlens has the exact same properties. The biologically produced microlenses can easily be implemented in these kind of applications.

Optical fibres

optical fibres
A single-mode optical fiber with microlens (Altman, 2007)

For all the above described applications, microlens arrays are used. Single microlenses can be used to couple light to optical fibres. Optical fibres are very thin, flexible and transparent fibres that are made from silica or plastic (Karp, Tremblay, & Ford, 2010). They are mostly used to transmit light between the two ends of the fibre. Because they permit transmission over longer distances and higher bandwidths than for example wire cables and the amount of loss is much smaller compared to metal wires, they are widely used in communication applications, such as telecommunication and computer networking. Microlenses can be used to make the optical fibres even more efficient(Karp et al., 2010).

Safety Tool

Safe by design synthetic biology

As an independent organisation, the National Institute for Public Health and the Environment of the Netherlands (RIVM) helps the government. Its goal is to protect the quality of the environment, including new techniques and innovations. Synthetic biology is such an upcoming field, with a lot of potential to solve societal problems. However, this technology is new and majority of its safety regulations are not set in legislations yet. The RIVM wishes to improve safety on every level, thereby implementing a safe-by-design principle in the field of synthetic biology. This principle encourages designers to design the product in such a way that health and safety risks are not forming a problem. Safety should be entailed within the design process.

For this, the RIVM asked the five different iGEM teams to provide them with their view on safe-by-design and how we would implement this during our project. An insightful day, full of discussions, was organised, in which was asked to present our vision and a plan how to implement the safe-by-design principle in our iGEM projects. Hopefully, this will provide the RIVM a way to implement a safe-by-design principle in the synthetic biology field.

Visiting Experts

Ronald van Dijk - Olympus

Date: 07-09-2016

When writing a business plan and investigating the potential use and commercial viability of a product, it is very important to talk to potential customers and collaborators. Therefore, we went to Zoeterwoude to have a talk with Ronald van Dijk, Application Specialist Microscopy at Olympus, a worldwide leading manufacturer of optical and digital precision technology, We discussed both possible applications of our biologically produced microlenses as well as the potential to actually sell our product to companies as Olympus. Initially we wanted to apply our cells in confocal microscopes, but Mr. van Dijk recommended us not to do this, because the confocal pinhole is specifically designed to select a small range of data, and losses are minimal. However, Spinning Disk microscopy does cope with high losses of light, and information, so it would be much more viable to apply our microlenses there. There is already a patent for the use of conventional microlenses in Spinning Disk microscopy, so we should really show our cells are different than current systems. Furthermore, he recommended us to find out the exact price over quality ratio of our lenses.

One of our biggest competing fields would be sprayed plastic lenses, which are also cheap and produced in high numbers. Therefore, we should be able to produce our microlenses for either a lower price or with a higher quality, which is very useful information for our business plan. The talk with Mr. van Dijk gave us a lot of new input, especially for the entrepreneurship part of the project, but he also underlined the potential of our project in the optics industry:

“Light is a limiting factor in imaging, adding a microlens array to a microscope would be an interesting solution.

Aurèle Adam - ImPhys

Date: 19-09-2016

Today we talked with Aurèle Adam, an assistant professor at the optics group of the TU Delft. We had a conversation with him about our model for the biolenses and how to interpret the graphs we plotted. Furthermore he wants to help us with the measuring of the transmission of our lenses in a setup in his lab. He was very enthusiastic about the lenses and told us that apart from possible applications of the biolenses, they are very interesting and have a lot of potential that will appear in the process of studying them.

Pieter van Gelder - Professor in safety science

Date: 01-08-2016

We had an interesting talk with Pieter van Gelder, a professor of safety science at the faculty of technology, policy and management of Delft University of Technology and director of the TU Delft Safety and Security Institute. Professor van Gelder explained to us how his research group analyzes the safety of projects. They use a lot of statistical data in combination with models in order to analyze risks in a systematic way. He stressed that, for example about the risks within the chemical industry and the change of dike breaches is much more data available than about the risks within a new research field such as synthetic biology. “I think a very comprehensive research should be done into the possible risks of synthetic biology. Your tool could be an important starting point of this research.”


Pieter van Gelder

Ewold Verhagen - AMOLF


Date: 14-07-2016

Today we talked to Ewold Verhagen, an expert on optics on nanoscales. He explained how whispering gallery modes work and how to take the small length scales compared to the wavelength into account: we should use Mie theory and not whispering gallery modes and ray tracing. Even though the size of our cavities is very small, he was really enthusiastic about our project and said: ‘This is a whole new field where there is much to discover’.

Ewold Verhagen

Arjen Amelink - TNO


Date: 30-06-2016

We had a great talk with Arjen Amelink, Senior Scientist at the Optics department of TNO, one of the largest research institutes of the Netherlands. Arjen has a lot of experience in the field of micro optics and took a lot of time to brainstorm with us on how to make our project a success. We had a good discussion on to how to reach population inversion, a state where most of the fluorescent proteins are excited, so we will definitely take this into account when setting up our excitation lasers! Also, Arjen told us he was very enthusiastic about our project, but advised us to always keep a real-world application in mind, even with such a fundamental project as ours. He thought that the silicatein, that can assemble monosilica, but also metaloxides, was a promising alternative for 3D printing on microscale. We will definitely look into all these applications and hopefully our project will be useful for a wider range of applications than we already imagined!



Arjen Amelink

Entrepreneurship

Introduction

We believe that it is important to think about the way to implement a synthetic biology project in real life. This is why we have decided to write a business plan about our microlens arrays (MLAs). Our MLAs can be used as encapsulation layer for solar panels. This will result in an improvement of the efficiency of the solar panels.

We have written our business plan in three steps:

In the first step, the introduction phase, we have used the Business model canvas as a starting point. The Business Model Canvas is a strategic management - and entrepreneurial tool. It allows you to describe, design, challenge and invent your business model. In our opinion it is a very useful tool to get the first insight into your new business.

In the second step we have done extensive research into our customers. We have talked to multiple potential customers in order to determine exactly what their needs are and how our product can meet these needs.

In the third step we have used the knowledge of the previous two steps to write a complete business plan that can be used to talk with potential investors and can function as blueprint of the startup.

Key Partnership

We have to establish several key partnerships with multiple parties. First of all, the suppliers of raw materials can be considered as important key partners. Among them there are, for example, companies that deliver the required mediums, nutrients, etc. With those companies we will have a buyer-supplier relationship, motivated by a need to acquire key resources. Another key partnership is with the suppliers of production equipment (reactors). With these companies there will be a longtime relationship. For example, a service contract could make them responsible for irregularities, while we guarantee them mondly revenues. It is important to analyze which companies are unreplaceable. For example, are there companies that produce a specific raw material that only they produce. In that case, we are very depending on that specific partner and this could be a risk. When the company, for instance, is not able to deliver the products or even goes bankrupt this can result in production problems. Therefore, it is important to analyze those possible risk and, if possible, to find alternatives in order to reduce the risks.

Key Activities

The company has two possible main activities, the manufacturing of the MLAs or being a licensor of the MLAs. As manufacturer we will produce the MLAs and sell them to a specific- or multiple different solar panel manufacturers. It is important that the production pathway of the company, and the final product is adapted to the solar panel companies. As producer we have to decide what production process we will be using and decide on the right technologies, machines, inventory management system, etc. Furthermore, we have to think about aspects such as the right production capacity, quality, cost control, etc.

A second option is to be a licensor. Then, an external party will get permission to produce their own biologically MLAs. A solar panel manufacturer could for example prefer to produce the MLAs by themselves, instead of buying them from us. As licensor you have to think in detail about the legal aspects of your further licensor/licensee relationship.

Key Resources

It is important that we patent our product to ensure the exclusive right to produce and sell it. The intellectual resources are therefore the most important key resources of the company. The patent will be associated with specific knowledge and expertise that is present within the company. Therefore, human resources are important for the company as well. Finally, the production capacity of the company is a form of physical resource that will make the company unique.

Value Proposition

The biological microlens is an extremely small lens that can be used to increase the efficiency of among other things solar panels. In contrast to regular chemically produced MLAs, our MLAs are environmentally friendly produced and eventually they will probably also be cheaper. Therefore, the main value of proposition of our company is the fact that with our product the efficiency of the solar panels of our customers will be improved with an environmental friendly and affordable method.

Customer Relationships

We will focus on creating a long-term relationship with our customers. Both parties have to adapt their production pathway to each other. Therefore, we expect that there will be a mutual dependency for a long period. If we become a licensor this will also result in a long term relationship. After all, the external party will have to build their own production facilities and they will have to produce the MLAs for a long period in order to return their investment.

Eventually we want to be known by our customers as a longtime partner that delivers high quality products. Since our company is a business to business company, we probably will have a limited number of customers and personal attention will be a key factor to our company therefore.

Channels

Our company will be a typical business to business company and there will only be business to business sales (B2B sales). It is expected that there is no interference of an external party such as a retailer. However, when our product will be sold to foreign companies, especially when those companies are located in a country far away from us, it is possible that we need a partnership with an intermediate party to make the distribution logistically possible and efficient.

Customer Segments

We expect that the main customers are solar panel manufactures. Their main goal is to produce efficient and affordable solar panels. However, in practice the efficiency of solar panels is still relatively low. With our MLAs the efficiency of the solar panels will be increased, which make our product useful for them. There are several different types of relationships we can have with the customers. First of all, it is possible to have a buyer-supplier relationship. It is, for example, also possible to have a licensor/licensee relation. Then our company gives permission to an external party to manufacturer the MLAs by themselves. This could be a solar panel manufacturer, but also a manufacturer of traditional MLAs that is willing to change its production method to a more environmental friendly method.

Cost Structure

The most important expenses of our company are probably manufacturing costs. After all, the production of the MLAs will be a substantial part of the total costs. These expenses consists of among other things costs for raw materials, depreciation costs, etc. Furthermore, especially in the beginning, R&D costs will be relatively large. It is expected that the distribution costs also will be significantly since it is important to transport the fragile MLAs carefully. Since the company is a Business to Business company, the costs of marketing are expected to be relatively small. When our company beside a manufacturer also becomes a licensor, the so called legal costs will be significant as well.

Revenue Streams

Our primary route to market could be direct selling. The direct sales business model means that we will directly sell our product to the manufacturers of solar panels. Another interesting business model is the so called subscription model that aims to secure the customer on a long term contract, so that they are consuming our product well into the future. This model is especially interesting when we have one or a very limited number of customers. It will guarantee revenues for a long period of time and at the same time it could guarantee them to have a unique selling point for a long period of time.

When we become a licensor, we can have different types of leasing revenues as well. For example, it is possible to agree with the customer that they will pay a fixed amount of money per time period. It is also possible that they will pay a price per produced MLA or per sold solar panel.

Finally, we could apply for grants. For example, many governments support environmentally friendly energy projects.

Solar panel manufacturers

To develop a successful product, it is important to know what the needs of your customers are. Therefore, we have interviewed 4 solar panel manufacturers, respectively three German companies and one Dutch company. To do this, we have developed a standardized questionnaire, that you can find here.

The main key points of the potential customer analysis are:

  • Micro lens arrays are new and revolutionary in the solar panel industry. Most manufacturers have never heard from them.
  • Final customers are probably not willing to pay a higher price for environmental produced solar panels.
  • The manufactures do not have the knowledge and the production facilities to produce the MLAs by themselves.
  • The efficiency is not determining for most solar panel manufactures. It is important that the return on investment and the eventual price are good.
  • The quality of the solar panels is very important. The encapsulation layers have to be strong and protective enough.

The complete report can be found here.

Final users

We believe that it is important to not only take into account what the needs of your direct customers are, but also what kind of needs the customers, one chain further in the supply chain have. After all, they eventually will indirectly have an enormous influence on the requirements of our final product. Therefore, we have done a final customer analysis as well. Based on the analysis it appears the solar energy market is dynamic and growing market. There is an increasing demand for environmental friendly and renewable energy sources (Centraal bureau voor Statistiek, 2015). However, currently the total photovoltaic capacity is only sufficient to supply 1% of the world's total electricity consumption. It is expected that the total demand of solar panels will increase even further in coming years therefore (IEA, 2016).

To analyze what the opinions and needs of the final consumers of solar panels are, we formulated, likewise for the producers, a standardized questionnaire that we have sent out to users and possible users. Both the opinions individuals and companies have been analyzed. The template questionnaire can be found here.

We have interviewed over 50 possible final customers. Based on their opinions the needs of the final customers have been formulated.

The main key points of the analysis are:

  • Final customers are not prepared to pay a higher price for solar cells because they are more environmental friendly.
  • In most cases final customers do not in particularly think about the environmental aspects of the solar panels itself.
  • If the price is comparable, most final customers would buy the most environmental friendly solar panels. However, they do not want to spent too much time figuring out what the most environmental friendly type is.

The complete report of analysis with quantitative data can be found here.

The context

The global demand for energy is highly dependent on fossil fuels. Nowadays, gas, coal and oil provide 80% of the total demand (World Energy Council, 2013). Those gases are associated with the emission of among other things carbon dioxide, which make them extremely environmental unfriendly. Carbon dioxide, a greenhouse gas, is the main pollutant that is warming earth. In the past 150 years people have pumped enough carbon dioxide into the atmosphere to raise its levels higher than they have been for hundreds of thousands of years (IEA, 2016). This has resulted in a temperature increase of almost 1 degree. Another problem of fossil energy sources is the fact that they are limited. Fossil fuels are not inexhaustible and as a result of the growing demand for energy, it is expected that they eventually will be exhausted in the future. Most people agree that to curb global warming and to prevent shortage, a variety of measures needs to be taken. Probably the best response to the growing energy problem is to switch to renewable energy sources. Renewable energy is collected from resources which are naturally replenished on a human timescale, such as sunlight, wind, rain, tides, waves, and geothermal heat. Since in less than an hour, the theoretical potential of the sun represents more energy striking the earth’s surface than worldwide energy consumption in one year, this is considered to be the most promising renewable energy source (Crabtree, 2006). In this context, solar panels will be the first application for the BioLens microlens array (BioLens MLA).

The problem

The efficiency of solar panels is still very low nowadays and has to be increased to make them profitable. One promising finding is the use of microlens arrays (MLAs). It is already proven that the use of a MLA as an encapsulation layer for the solar panels results in 20% to 50% increase of the efficiency (Jutteau, et al., 2015; Nam, et al., 2013). However, the production of these MLAs is still relatively expensive and especially very environmental unfriendly (Nam et al., 2013). Therefore, economically it is not favorable to use MLAs at the moment and perhaps even more important for us, it does not fit the idea about environmental friendly solar panels. After all, the production is very environment unfriendly.

The solution

The biologically produced microlens is an extreme small lens that can be used to make environmentally-friendly and eventually cheaper microlens arrays. The use of these MLAs as encapsulation layer for the solar panels, will result in an increase of the efficiency of those solar panels. To achieve this, Escherichia coli cells (E. coli) will be covered with polysilicate, using the enzyme silicatein. By overexpressing either the transcriptional regulator bolA or the cell division inhibitor sulA, the cell morphology can be changed and the and the optical properties of the lens can be optimized. The biological MLA as encapsulation layer will result in more efficient and more environmental friendly solar panels.

Back to Top

BioLens is a high tech startup with well-educated people with different backgrounds. We will work with an interdisciplinary team that will form the board of directors. We believe that within the company equality is important and we aim to be an organization with a collaborative structure.

A collaborative structure means that we aim to be a non-hierarchical organization. The organization will be fluid and flat, which gives every individual a great responsibility to make decisions on its own. We will set targets for individuals and teams and then provide the appropriate motivation and support to help them achieve those targets. Traditional management layers will disappear in this way.

Eventually we believe that this type of structure results in a more open and trusted environment. Every individual should feel confident to share his opinion and to criticize the opinions of their colleagues and managers. An environment will be created where openness, sharing and discussion is central to everything that takes place.

This will result in a company with employees that feel much more responsibility and loyalty. Every individual employer will feel taken seriously and therefore will feel a collective sense of ownership and involvement in the process of achieving the goals of the company.

BioLens is a spinoff from the TU Delft. This has as one of the main advantages that they will help us to make our business a success. This could be help or advise, regarding project related aspects, financial aspects, etc. For example, they could help us developing the final prototype. Within the board of directors there is nobody with experience in the field of solar energy and we probably will need help to develop our final prototype. Research groups from the TU Delft could help us with this. Therefore, as can been seen in Figure 1, we consider the TU Delft as part of our organization as well.

figure1
Figure 1: Organizational structure
Back to Top

Proof of concept

To demonstrate that the BioLens concept works, a literature study is done.

Figure 2 shows a schematic representation of the solar cell mounted with the MLA layer.

figure2
Figure 2: Schematic representation of the solar cell mounted with the MLA layer (Nam et al., 2013)

Based on the figure it appears that as a consequence of the differences in refractive index between the media and the lens, the light is concentrated on the focal plane. The MLA has multiple advantages in this way. First of all, it redirects the incident solar light toward interfinger regions and away from the mirror-like electrodes. Secondly, it redistributes the refractive light under the gridline areas. Furthermore, it provides a micro-concentration effect to facilitate photo-induced exciton generation and finally it protects the cell from harsh environmental conditions after being fully packaged (Nam et al., 2013).

The efficiency of this setup have been tested and is compared to solar panels with a regular encapsulation layer. Based on published experimental results it appears that the power conversion efficiency (PCE) of the solar panels is almost 20% higher for the solar panels with MLA than for the solar panels without MLA encapsulation layer (Figure 3).

figure3
Figure 3: Efficiency measurements of different solar cell setups. (Nam et al., 2013)

Based on the published results it appears that the use of MLA as encapsulation layer is a successful way to improve the efficiency of solar panels. In this case so called GaAs-based solar cells are used.

In a comparable research project, the researchers have proved that the efficiency of Cu(In,Ga)Se2 solar cells can be increased with 50%. In their research they have used microlens arrays with spherical lenses. However, they have mentioned that this is not necessarily the optimal lens-shape and also the optimal array shape could be different (Jutteau et al., 2015). Therefore, it is not surprising that research is done into the influence of the shape of the microlens arrays. Researchers have figured out that a curved microlens array can even improve the efficiency with more than 100% compared to ‘normal’ flat microlens arrays (Figure 4) (Xie et al., 2015).

Figure 4: A curved microlens array (Xie et al., 2015)

The biologically produced microlens will be much smaller than the microlenses used in the aforementioned research. This will benefit the efficiency. However, it is expected that the optical properties of the biological microlenses will be different compared to regular microlenses. As conservative estimate, we hypothesize that the increase in efficiency with the biologically produced microlens is 20%. This efficiency increase we consider, without taking unnecessary risks or too much optimism, at least viable.

Intellectual Property

To obtain information about the intellectual property protection of our product, we have discussed the project with the Valorisation Centre of TU Delft and Delft Enterprises. The Valorisation Centre is an organization that focusses on the commercialization of technical innovations from the university. Delft Enterprises facilitates and participates in spin offs of the TU Delft. For example, Delft Enterprises and the Valorisation Centre provide startup funding, explore other funding opportunities and can help with the patenting process and IP management.

Existing patents

Extensive research is done into related patents. There are multiple patents that describe a specific production process for a solar cell with a microlens array. Some examples can be found in Table 1.

Table 1: Patents that describe a specific production process for solar cells with a microlens array
Patent Difference to the BioLens MLA
Publication Number: WO 2013129797 A1
Description: Describes a specific solar cell system with a microlens array. The system is unique because of the use of a gap and grid system. The light converges because of the microlens after which the grid is used to diverge the light again.
Our microlens array forms an encapsulation layer for the solar cell. The light will only be converted before it interacts with the solar cell. The convergence and divergence makes their system unique, but also different from our system.
Publication Number: US 20130284257 A1
Description: A dye-sensitized solar cell with internal microlens array includes an anodic electrode, a cathodic counter-electrode, and an electrolyte.
Describes the formation of a specific solar cell and microlens array combination. The microlens array is placed insight the solar panel. The BioLens microlens array is an external microlens array that is used as encapsulation layer.
Publication Number: US 20150228815 A1
Description: Provides a specific solar cell apparatus with an upper surface with convex shaped discrete microlenses.
The surface is covered with a plurality of convex-shaped microlenses. Our microlens arrays are concave formed.
Publication Number: US 8759665 B2
Description: Provides a specific solar cell apparatus with microlenses and a method of manufacturing this apparatus.
While the concept of increasing the efficiency of the solar cell is the same, the production method is completely different. Furthermore, for our product a microlens array is used, instead of separate microlenses.

There are also many microlens array production methods patented. However, these are all chemical production methods. There is no patent that describes environmentally friendly produced microlens arrays, produced by genetically modified E. coli. This makes the BioLens MLA a novel and non-obvious product that is in our opinion fully patentable.

The patent application

We have developed a unique method to produce microlenses or in particularly microlens arrays. There are several patenting strategies, possible patentable subject matter is further explained below:

  • The E. coli strain that is genetically engineered to produce membrane fused silicatein. This protein can be used to make polysilicate out of monosilicic acid.
  • The production method for the microlens with E. coli strain that is genetically engineered to produce membrane fused silicatein.
  • The production method for the specific microlens arrays with the help of the E. coli strain that is genetically engineered to produce membrane fused silicatein.

The second option has our preference at the moment. Patenting of genetic strains appears to be difficult in practice. For example, modifications of the strain or the use of an insert from different organisms makes it sometimes already possible to get around the patent. Partly, this can be prevented by only patenting a part of the E. coli strain. For example only patent the round cells with covered with silicatine. This will make it more difficult to change it and get around the patent. However, the iGEM registry can also complicate the patenting process. This is an open source database with all the strains. When we patent our microlens, instead of solely the microlens array, we can protect our intellectual property more easily. The reason to patent the microlens instead of the microlens array is because this gives us the possibility to use the patent for the production of different applications in the future.

We will patent our product with the help of the IP department of the Valorisation Centre.

Patent ownership

It is important to determine the ownership of intellectual property generated at the TU Delft. The product development is a result of the collaboration between a team of students and employers from the TU Delft. Intellectual property, generated by employees of TU Delft are generally property of TU Delft. The intellectual property generated by students can be, depending on the circumstances, owned by the students, the TU Delft or a combination of both. For example, when students are coached by TU Delft employees who contribute to the invention, they can be co-inventors and TU Delft can have a (partial) claim on the IP.

To determine the contribution to the invention of the individual students and TU Delft employees, we have to determine what the individual share is of every stakeholder in the developing process. The Valorisation Centre can help in this process.

As the worth of a patent can be diminished by having multiple owners a common solution is that the co-inventors that are not TU Delft employees transfer their rights resulting from their co-inventorship to TU Delft, who will become the sole owner of the patent. In return the startup company can agree on the conditions for an (exclusive) license and future transfer of the patent to the company. In these conditions the co-inventorship of the student team will be taken into account.

Back to Top

Market definition

The biological microlens can be employed for a large number of applications. For example, single microlenses are often used to couple light to optical fibers, while microlens arrays can for example be used for CCD arrays and for digital projectors, where they focus light to specific areas of the LCD. With microlenses it is possible to make lightweight compact imaging devices. Therefore, they could also be used in for example mobile phones. Furthermore, microlenses can also be used as encapsulation layer for solar panels in order to increase the efficiency of these panels. We will firstly focus upon this last possible application. The business strategy is to introduce the biological MLAs in the solar energy market first.

The final customers will be the end users of the solar panels. This can be both individuals and companies. In the Netherlands, 70% of the total solar panels are in possession of households, while 30% of the solar panels are used for commercial purposes. This results in almost 260.000 households that have solar panels. Together, all these solar panels have produced 1485 MW in 2015. This is less than 1% of the total power supply. The government aspires to increase this number to at least 5% in 2020. This means that the number of solar panels has to be increased enormously or the efficiency of the solar panels has to be improved (Wezel, 2015).

Germany is the world's leader of photovoltaic capacity since 2005. With a total capacity of more than 35 GW, the photovoltaics contribute almost 6% to the national electricity demands. The government is planning to increase this percentage even more (Statistiek, 2015).

Worldwide growth of the use of solar panels varies strongly by country. By the end of 2014, cumulative photovoltaic capacity increased by more than 40 GW and reached at least 178 GW. Currently, the total worldwide consumption of energy is equal to 18,400 TWh. This means that the total photovoltaic capacity is sufficient to supply 1% of the world's total electricity consumption (IEA, 2016).

In conclusion, the solar energy market is a dynamic and growing market. There is an increasing demand for environmental friendly and renewable energy sources. It is expected that the total demand for solar panels will increase even further in coming years therefore.

Unique selling point

The unique selling point of the microlens array encapsulation layer is to offer the solar panel industry a whole new and unique method to increase the efficiency of their solar panels with at least 20%. The microlens array can be produced in an environmentally friendly way and is furthermore also expected to be cheaper than regular microlenses. Next, by using bacteria to produce microlenses, very small microlenses can be produced, which will make the arrays even more efficient.

Competitors and Substitutes

Currently the use of microlens arrays for solar panels is still in the research phase and in the solar panel industry, microlens arrays will be new and revolutionary. This means that there are no companies operating in this industry that already sell microlens arrays. However, there are still multiple possible competitors and substitutes. We distingue 3 different types of competitors, respectively the use of regular fossil fuels, solar panels with regular encapsulation layers and chemically produced microlens arrays. Alternative sustainable sources, for example wind energy and biofuels, are disregarded, because we believe that the degree of threat of these resources is limited for us.

Regular fossil fuels

Coal, oil and gas are examples of fossil fuels. These are currently the most used energy sources. For example, we use around 80.000 barrels of oil in the world per day (Index Mundi, 2015). As described, this is very environmentally unfriendly and furthermore fossil resources are not unlimited. Therefore, most people do agree that we have to take measures in order to promote renewable energy sources and to limit the use of fossil resources. However, the price of oil has almost halved in the last 5 years, which makes it a very cheap and therefore attractive energy source nowadays (Index Mundi, 2015).

Solar panels with regular encapsulation layers

To protect the photovoltaic cells of a solar panel, solar panels require an encapsulation layer. They are mostly made from glasslike materials and they generally decrease the efficiency of the solar panels. The price is currently lower than the price of the microlens arrays.

Chemically produced microlens arrays

While the other forms of potential compaction are all substitutes, chemically produced microlens arrays can be considered as a direct competitor. The chemically produced MLAs are very environmentally unfriendly and expensive. The price can rise to hundreds of euros per cm2. However, it is expected that the price will decrease when the production volumes increase. Another drawback of the chemically produced MLAs compared to the biologically produced MLAs, is the size of the microlenses. The biological microlenses, with a size of less than 1 µm, will probably be smaller than the chemically produced alternatives.

Conclusion

We have compared the 4 alternatives in the field of price, efficiency, sustainability, the influence of the alternative on the environment and the acceptance among the public. The results can be found in Table 2.

Table 2: Comparison between different potential competitors
Regular fossil fuels Solar panels with regular encapsulation layers Chemically produced microlens arrays Biologically produced microlens arrays
Price ++ + -- -
Efficiency ++ -- + +
Sustainability -- + + ++
Environment -- + + ++
Acceptance - ++ ++ +

Pricing and Promotion

Pricing

The pricing of our microlens arrays will depend on the benefits, type of relation and the volumes. It is announced that the increased efficiency of the solar panels is the main benefit for the customer. Our goal is to get a strong buyer-supplier relationship with a limited number of customers or even one specific customer. We will use the pricing by customer benefit strategy to determine the selling price of the microlens arrays for every single customer.

figure5
Figure 5: Advantages and disadvantages for potential customers

As shown in Figure 5, the total benefits of the customer have to be larger than disadvantages. We will discuss with our potential customers in detail what the benefits for both parties could be. Our revenue model will be comparable to the brokerage fee model. We will ask our customers a fixed price in order to cover the costs, plus a variable price. This variable price will be depending on the benefits of our customers. We aim to get a variable price that is equal to 30%-50% of the extra profit our customers make with the microlens array.

Promotion

BioLens is the result of an iGEM project. One of the main advantages is the fact that the iGEM team gets a lot of media attention. The project acquires the interest of a whole variety of newspapers, magazines and television programs. This makes the public aware of our project. It is important that they know what the benefits of our project are. As can be seen in the customers analysis, most end users would be interested in more environmentally produced solar panels, but it appears that most of them did not think about this before they became aware of our project. It is crucial that also the public becomes aware of our project. When they are interested in more environmentally produced solar panels, indirectly this forces producers to produce them in a more environmentally way.

Furthermore, it is important to promote our product to solar panel manufactures. We are a B2B company and direct promotion will be our main promotion activity. Just as we did for the customer analysis, we will talk to potential customers and show them our product. Eventually, the main goal of our promotion activities is off course to sell our product, but we also have a broader social purpose to make the people aware of the fact that production methods can have a significant influence on the environment.

Back to Top

Planning is a difficult but critical part of a successful business plan. To make a strategical efficient plan, we have divided the planning in multiple subcomponents.

Development

In the first year we will continue the development of our product. We have to develop the final microlens array and have to test the properties of it. We will among other things do more research into how we can optimize the MLAs. For example, we will analyze in more detail the influence of shape, size etc. After this, we will build our first prototype. To make this possible we will need experts with experience in the field of solar panels. There are multiple research groups within the university that possibly could be interested in a cooperation. We would also prefer to collaborate with an industrial partner. Then this partner would be our first tier and we could develop a strong relationship.

Safety & Certification

The microlens arrays will be produced with the help of genetically modified bacteria. When we want to introduce our product in applications outside the lab, it has to meet very strict and specific safety requirements. In the Netherlands, the RIVM assesses safety applications and it is important to contact them in an early stadium. If we collaborate with foreign industrial partners or if our product will eventually be used in foreign countries, it is important to meet the requirement of those countries as well.

Manufacturing

When the final prototype is built, we can start the construction of the manufacturing facilities. Prior thereto, we have to develop a manufacturing process. In this stadium we also will make, with reservation, agreements with suppliers of production equipment and suppliers of raw materials.

Customers & Partners

To make a company successful, it needs customers. We will start contacting potential customers and partners in an early phase. We strive for a first tier that is involved in the development phase.

Financing

To build the final prototype, implement the product, etc. we have to acquire an estimated budget of €1.2 million. We are planning to acquire this budget with among other things grants from the government, the university, and with loans.

Obtaining intellectual Property

To protect the invention, it has to be patented. We have developed the product in collaboration with the TU Delft. Based on the requirements of the TU Delft, this automatically means that they will partly be the owner of the intellectual property.

Milestones

One of the critical points for the startup will be the construction of a working prototype. Furthermore, the acquisition of funding to construct among other things the manufacturing facilities are very important. Finally it is of the utmost importance that we will find our first customers, the so called first tier.

Please find below the detailed Roadmap for the startup phase of our company. This phase consists of 4 years (Figure 6).

Figure 6: Roadmap for the startup phase of BioLens.
Back to Top

Just as every research project, every company and especially every startup has certain risks that they will encounter. It is important to be aware of these risks and to think about what can happen, how likely is it that it will happen and if it does happen, what the consequences are. This will give you the possibility to take measures in order to take away the risk or the minimize the potential (negative) consequences on time. There are many different types of risks, with negative consequences or positive consequences. To become successful as a company it is important to minimize the risks with negative consequences and to maximize risks with positive consequences (opportunities). We have used the risk matrix tool to analysis our possible risks with a negative consequence (Figure 7).

figure7
Figure 7: Risk matrix

Legal risks

The use of microorganisms is associated with some specific legal risks. First of all, it is important that it is allowed to use our product outside the lab. Therefore, we have to meet several requirements and gain the necessary safety and technology approvals. These requirements can differ per country and there is a risk that we are unable to meet the requirements in one or more countries. This could in the best case delay the market introduction, but in the worst case it could also result in an impossibility to introduce our product into the market. The consequence will probably be major therefore. Fortunately, there are a lot of measures that could be taken in order to minimize the probability this risk occurs. For example, we have to contact the organization that judge applications about the use of our product outside the laboratory in an early stage of the research and development phase. Then we can, if required, still make relatively easy adaptations in our product. However, it is still possible that we want to introduce our product in a later stadium in a foreign market with different rules that makes it impossible to introduce our product into this specific market. Therefore, we consider this risk to be unlikely.

When we are allowed to introduce our product into the market, there is a small change that it appears that our product causes harm to people and/or the environment. For example, any remaining part of the microorganism in our product to which the environment is exposed, could in theory make people sick. The consequences of such events would probably be catastrophic for the company. However, since the organism we use are very weak variants of the E. coli bacterium, the likelihood that this will happen, is considered to be small.

It is also possible that we are not able to patent our product. This automatically would mean that external parties are allowed to produce the biological MLA and this can worsen our competitiveness. We consider this as a possible risk with major consequences.

Market related risks

There is always a probability that our product will not be accepted by a part of our possible customers. However, since we have done an extensive customer research, we consider this risk to be small.

An additional possible risk is that our product does make use of a genetically modified organism. The real risks of these organisms are considered to be small, but it is possible that the perception of the risk among the public is different. For example, negative media attention about the use of genetically modified organisms in our product could have a negative influence on the sales volume of our company. The consequences in that case are expected to be moderate. However, since our product is not a food and it is a part of a final larger product, it is considered to be unlikely that there will be negative attention. Furthermore, together with all the iGEM teams and many other companies and organizations we are working hard to improve the acceptation of synthetic biology among the public. This will help the acceptance of our product as well.

The risk of a (new) substitute is also a serious risk. For example, the general chemically synthesized MLAs could become cheaper and more attractive therefore. It is also possible that a totally new alternative will be developed in the future. Therefore it is important to keep investing in R&D in order to keep our product “up-to-date”. We do expect that it is possible that there will be new competitive substitutes for our product, but because of all these measures we expect that the consequences will be moderate for a longer period of time.

Finally, it is also possible that the total market changes. In an extreme situation this could for example result in no need of encapsulation layers any more or an extreme increase of efficiency of solar cells, which make our specific MLA encapsulation layer useless. This could be catastrophic for our company. Fortunately, we expect a radical change like this will be unlikely.

Product and operational related risks

There is a risk that we may not actually be able to deliver the product to the market within the resources (time, money) that we have available. Furthermore, there is always the risk that our product may not work exactly as well as promised or envisioned. It is for example possible that some technical challenges may be greater than initially assumed. We try to minimize the consequences of these risks by doing solid theoretical research and by building prototypes in an early stage. This will limit eventually the extra time that is required.

Unforeseen scale-up problems are also a risk that we have to take into account. For example, it appears that bacteria sometimes react differently in a large reactor than in a small variant. When such an incident happens, this can have a major influence on the total investment. Therefore, it is important to minimize the probability of occurrence. We will talk with experts in this field in an early stadium of the development. Furthermore, we believe that making prototypes is very important to minimize this risk. Finally, we think it is wisely to use mathematical models and literature for this. This all should make it unlikely to have scale-up problems.

It is also possible that there are no qualified employees available. However, we think it is very unlikely this is the case and otherwise we think it is relatively easy to educate the new employees. After all, we have a new product, but we are operating in already existing industries with well-educated employees.

For some companies supply problems of raw material can be a major problem. We expect that this is not the case for our company, because we do not use very limited available and very specific materials. Therefore, we are not dependent on one specific supplier. It is likely that sometimes suppliers are not able to supply on time because of supply problems or because they are bankrupt, but the consequences are considered to be insignificant because there are always alternative suppliers.

Back to Top

Market size

First we will focus on the Dutch and German market. The total market size of both markets is equal to 36.5 GW. Based on the governmental goals, the market size has to grow to 74 GW in the year 2020. This means that the growth potential is equal to 37,5 GW. Currently there are 81 solar panel manufactures in Germany, which have in total around 50% of the market share of both countries ("Solar Panel Manufacturers," 2016; Wirth, 2016).

Based on these data, we have estimated the potential market size. We believe that there is a potential market of 187,5 MW in the first 4 years. This is equal to 1% of the estimated market growth of the German companies.

Development prototype

The BioLens will be further designed and tested during the first half of 2017. The cost breakdown of this phase is shown in Table 3.

Table 3: Cost breakdown of the prototype
Labor cost (5 fte.) €75.000
Consulting (0.25 fte.) €5.000
Material costs laboratory (chemicals, consumables, etc.) €5.000
Costs Solar panel €500
Rent (laboratory) €6.800
Total €92.300

The prototype will be developed in collaboration with the TU Delft and they will be co-owner of the IP therefore. BioLens will have the exclusive right to use the developed prototype. To develop our prototype, we will use a laboratory from the TU Delft. We are looking at multiple grants and subsidies to (co-)finance the early stage research and development. Furthermore, we plan to apply for the so called UNIIQ funding. This is a Proof of Concept fund for early stage start-ups that need funding to develop their invention to market readiness.

Expenses

We have made an estimation about the expenses of the first four years of the company. The breakdown of those expected expenses can be found in Table 4.

Table 4: Cost breakdown first four years
2017 2018 2019 2020
Labor costs
Management €150,000 €160,000 €165,000 €168,000
Consulting €10,000 €15,000 €5,000 €1,000
Manufacturing staff €0 €0 €60,000 €62,000
Supporting staff €0 €15,000 €20,000 €20,000
Legal costs
Business establishment €900 €0 €0 €0
Intellectual property €10,000 €10,000 €100,000 €5,000
Regulatory approval €2,000 €4,000 €0 €0
Manufactoring costs
Chemicals + Consumables €5,000 €5,000 €6,000 €6,000
Rent €3,400 €6,800 €6,800 €6,800
Distribution €0 €0 €3,000 €3,000
General costs
Marketing/Sales €1,000 €2,000 €1,500 €1,500
Interest €40,000 €40,000 €40,000 €40,000
Overhead + Unforeseen €22,570 €25,780 €33,230 €31,330
Total €248,270 €283,580 €365,530 €344,630

The costs are based on the following assumptions:

  • Labor costs are based upon the conventional labor costs for the concerned groups, taking into account the number of fte’s. The salaries of the management are deliberately low in order to increase the growth potential of the company. The whole team agreed with this. Most of the consulting and supporting will be done by employees from the TU Delft. For example, within the TU Delft there are multiple experts in the field of solar panels that could help us to develop the prototype.
  • The costs for the business establishment are based on information provided by Delft Enterprises.
  • Costs for intellectual property are based on information provided by the Valorisation Centre. They can eventually also help us with the patenting process.
  • The costs for regulatory approval are an educated guess and are based on among other things the expected required time of external parties, traveling costs, etc.
  • The expenses for the consumables and chemicals are based on the real expenses during the iGEM project.
  • The rent concerns costs for a laboratory and production facilities of the TU Delft. The TU Delft can provide those facilities as in kind contribution in return for a larger share in the company.
  • Distribution costs are estimated based on maximal expected distribution distances.
  • Marketing/Sales costs are based on the opinion and expectations of an expert in this field.
  • The interest costs are based on the expected loan.
  • The overhead and unforeseen costs are equal to 10% of the total costs. This is common practice. Among these costs are administrative costs, telephone costs, but it is also a buffer for costs that in reality are larger than estimated.

Based on Table 4 it appears that the expected required budget for the first 4 years of the startup is equal to about €1.200.000. In the first phase we want to apply on grants and government loans such as STW: Take off 1 for feasibility studies (€40k subsidy) and Take off 2 for early stage financing (up to €250k loan). There are multiple funds that provide loans for promising startups. For example, funds such as UNIIQ, a proof of concept fund that can offer up to €300k in convertible debt financing, and which is partially set up by TU Delft, Erasmus Medical Centre, the University of Leiden and the regional development agency. With these we hope to obtain a capital of €500.000 with an average interest rate of 8%. Furthermore, we hope to receive in total €150.000 of grants from for example the governmental “Demonstratie energie-innovatie” fund that gives grands to companies that do research into green energy innovation. Finally, we are searching investors that are prepared to invest for a total of €550.000 in our company. The TU Delft will be an investor and could also be a contribute in kind. Furthermore, also Shift Invest is a potential investor. We estimate that with these funds we can come to a stage where regular commercial financing becomes a possibility, or that we reach a point where a large solar panel manufacturer is willing to take over our business.

Profitability

Based on the market size analysis, the potential market size is estimated to be equal to 187,5 MW. Currently the average power of a solar panel is equal to 0,0000137 MW/m2. Based on these data there is an estimated market of almost 1.500.000 m2 in the next 4 years. As described in the customer analysis, the total added valued of the microlens arrays is equal to at least 897 euro/m2. We estimate to sell the microlens arrays for 30% of this profit. This means that the selling price is equal to €270.

figure8
Figure 8: Profitability of BioLens

Based on this conservative estimate it appears that the costs are already covered at a much lower sales volume than the estimated potential market in the first four years. We are well aware of the many uncertainties in these calculations. However, since there is still a large margin between the breakeven point and the expected sales, we dare to say that the BioLens microlens array is profitable.

Back to Top

iGEM Analysis

INTRODUCTION

“Synthetic biology or biotechnology in general is the world wide web of the last century. I believe it going to change the world.” This was claimed by Randy Rettberg, founder of the iGEM competition during The European Experience 2016 iGEM meeting. The world wide web changed the society into something unrecognizable and unlikely to humans living at the beginning of the last century and according to him, synthetic biology will change the world in the same extent. This is why he in the first place founded iGEM. “Universities need to get behind the projects and give their students the opportunity to be part of something revolutionary”. He thinks that students who participate in iGEM will be a part of a process that will revolutionary change the way we for example create chemicals, feed the world and cure diseases. He hopes that iGEM will contribute positively to this process (Reichman, 2013).

iGEM officially began in 2003 as a study course at the Massachusetts Institute of Technology (MIT). In this course students where challenged to develop biological devices to make cells blink. In the year 2004, instead of the normal course, a competition with five teams from various universities form the United States was held. A year later also teams from outside the United States took part in the competition (Community, 2015). Years prior to 2006 had no specific winners and therefore it may can be said that the competition, as we know it today, began life in 2006. This means that the competition in its current format could have celebrated its tenth anniversary last year. Therefore, it is a good moment to draw up the balance and to analyze what the influence and impact of iGEM was over the past 10 years.

In this study we will analyze iGEM. The 9 facets of iGEM are used to do this. These facets are respectively technology, teamwork, entrepreneurship, sharing, education, safety and security, responsibility and community. With this report we think that iGEM can be improved even future. We believe that iGEM has already proven its volubility for the world. However we also think that there are always possibilities to improve even future and with this setting we have written this report.

To collect data about iGEM, we have developed a questionnaire and we have send it to all the participating iGEM teams. There were over 50 teams that eventually helped us with our analysis by filling in the questionnaire.

In this chapter, the competition itself is analyzed. Firstly, quantitative and qualitative data is collected about the competition. After this we have analyzed the competition and have especially focused on potential inequality within the iGEM competition.

Based on the quantitative and qualitative data analysis, we have concluded that the medal requirements are mainly focusing on science and policy & practice. This is understandable, since the iGEM competition is all about the use of synthetic biology in a socially responsible way. However, we think that mathematical models provide a great way to describe the functioning and operation of BioBrick Parts and Devices and that modeling becomes a more and more important aspect of synthetic biology in the future. Therefore, we advise the iGEM headquarters to include modeling in the medal requirements as well. To make sure that iGEM teams with no experience in modeling are not extremely disadvantaged, we propose to add an extra possible requirement that teams can meet to win a gold medal:

“Construct a mathematical model to aid in the design, understanding, and/or implementation of your project. Validate your model with measurements.”

Another point of interest, is the fact that currently 90% of the teams are able to win at least a bronze medal. This raised the question whether the medal requirements are too soft. To analyze this proposition, we have asked the opinion of the headquarters and discussed it extensively within our team and with our advisers. Based on the analysis we believe that it is not a good option to drastically change the medal requirements in order to decrease the number of teams that win a medal. The headquarters clearly stated that the goal of the medals is to make sure that iGEM teams focuses on the aspects they believe to be important. They would like to give every team a gold medal if all teams meet the requirements. Furthermore we have noticed that a gold medal can result in a boost in fundraising. Teams that win a gold medal could probably raise funding more easily. Therefore this is also an important reason we think the medal requirements should not be too hard. However, we do believe that it is important to update the requirements every year. Among other things, new technology developments will make it more easy to meet certain requirements. Therefore, just as in the past few years, the requirements have to be adapted every year and if required they have to be tightened.

Finally, we have looked into potential inequalities within the competition and we have eventually focused on three potential inequalities: Budget, Laws & Regulation and Travel costs. Based on the survey, it appears that there are large differences in budgets between teams (Figure 1)

figure1
Figure 1: Budget distribution of the iGEM teams. Data based on the teams that fill out the survey.

We have extensively researched the possibilities to decrease the differences in budgets and decrease the inequality within the competition therefore. However, we have concluded that none of those options would positively contribute to the competition. Most of the options appeared to be uncontrollable or could negatively influence the project results. In our opinion the research project is the most important aspect of the competition. Teams should not be limited in, for example, their budget therefore. Instead of limiting ‘wealthy’ teams, the competition could better promote ‘less wealthy’ teams. We have discussed multiple ways to do this in the report.

Differences in Laws & Regulations between different countries can also result in inequalities. Based on the survey it appears that several teams had legal issues. About 30% of the teams does encounter problems. Based on the survey it appears that most of these teams had problems with the fact that the regulation was not sufficient enough. In many countries the regulation about biotechnology and synthetic biology is not up to date or even almost absent. Therefore, there are many teams that operated in a grey area. Fortunately, there were teams that started a collaboration with the government to solve the problems, which is in our opinion a great example of the potential of iGEM.

Finally there are large differences in the travel costs between the teams, which also results in an inequality within the competition. Teams from for example Boston, New York or Philadelphia can travel for 50 to 100 euro per person while teams from Australia probably need 1000-1500 euro per person for traveling. Figure 2, illustrates the differences between different countries in traveling costs.

figure2
Figure 2: Traveling costs

The complete chapter can be found here.

Back to Top

In this chapter of the report we have analyzed what happened with the iGEM project after Jamboree. We have asked the iGEM teams multiple questions about this in our survey. Figure 1, summarizes the results.

figure1
Figure 1: Summarization of what happened with the iGEM project after the Jamboree. Data is based on the survey.

We have analyzed how the iGEM results can become more public available. Currently, interested people have to visit the wiki of a team to find any information. The formats of the wiki’s are all different and there is no overview where all the (interesting) projects can be found. Therefore, we think that iGEM should find a way to make the results and projects more easily accessible. One of the possibilities to do so, is to start an own journal. To make this possible, writing a publishable article could become a possible gold medal requirement teams can meet. Teams that meet the requirements and receive a gold medal will then be published in the iGEM journal. This would give external parties an easy way to see what the results are froms the ‘best’ iGEM projects.

Another option could be to make it obligatory for teams to write an abstract about their project. Those abstracts can then be bundled and published as well. To make this bundle with abstracts uncluttered, we advise to use a standard format for those abstracts. The use of standard formats will be discussed in more detail in the paragraph Sharing & Community.

The complete chapter can be found here.

Back to Top

iGEM is a multifaceted competition in which students are encouraged to rise above themselves and thereby develop numerous new skills. The many different facets of the competition ensure both the toughness of the program as well as simultaneously developing a new generation of all-round engineers. Hereby establishing a strong, renowned science community.

One of the things this new generation of scientists could really benefit from, is being an active part of a widely recognized community within the scientific world. The community enlarges personal networks and could also help new scientists in their future career. iGEM has grown for the past decade to a total of 16,000 members. To increase both numbers and individual activity of these members, we have proposed some strategies.

To strengthen the community even more and to ensure its continuity, new members need to be attracted. Here our main focus was on attracting new iGEM participants and keep them connected in the iGEM community after competing. Interactions between old and new participants and the mutsual positive feeling established by these interactions ties them proverbally to the community.

Creating a coherent community “family” feeling is of great importance of the community’s success. To develop this, as well as enlarging trust in external parties, we focused on knowledge sharing as the main value for this community. Even though some of the necessary motivation will be internal, iGEM headquarters could establish some effective motivation by enabling and encouraging some activities. For example, the iGEM headquarters can start making a difference in the perception of external parties by recommending participating teams to write their experience in a certain format. We think the proposed format will make science communication – and here in specific science performed by the iGEM community – more open. Thereby potentially also enlarging its trustworthiness in the scientific world.

Besides that, we have proposed different strategies to enlarge and improve both internal and external communications, to increase the community family feeling and the familiarity of iGEM in external parties simultaneously.

The complete chapter can be found here.

Back to Top

In this chapter, we have focused on education. We have analysed what teams did to educate the public, but also what the influence was of external parties on iGEM projects.

Firstly we have asked teams whether they have developed an education tool and if so, whether the teams did evaluate their tool. It appeared that about half of the teams developed a tool and 60% of those teams did evaluate it afterwards. The teams that were able to test their tool, mostly used their tool in a real live setting. For example, they used the tool to educate school children, in outreach events or the tool is reviewed by experts.

Most of the educational activities were targeting high school students, almost 56% of the responders were engaged in educational activities for high school students. With respectively 48% and 40%, the university students and adults were also popular target groups. Only 23% of the responders educated elementary school children and 10% of the responders reached a target audience outside one of these groups.

Based on the survey we can conclude that there are many teams that are engaged in educational activities. Some of those team have developed very interesting tools, that could also be very useful for other iGEM teams. We advise iGEM headquarters to make a page with interesting tools in order to make those tools more accessible.

We have also analysed what the influence was of collaborations between iGEM teams and external parties. Based on the survey it appears that about 40% of the teams stated in the survey that they collaborated with external parties. Multiple of those teams have worked with other iGEM teams, experts in a research field or public organizations to improve either their own project or to help or educate other parties. For example, 30% of the teams interacted with policy makers. They had conversations, debates and/or gave advise to policy makers. One of the responders indicated that the government currently even is changing the law because of the iGEM team. Eventually, multiple teams indicated they would not have been able to get certain results or do specific activities without the help of those external parties.

Finally we have asked the responders on a scale of 1 to 5, where 1 is not at all and 5 is really large, how valuable participation in the iGEM competition was for them (Figure 1).

figure1
Figure 1: Answer distribution to the question: On a scale of 1 to 5, where 1 is not at all and 5 is really large, how valuable was your participation in the iGEM competition for yourself?

The analysis has shown that iGEM can significantly contribute to the general education about synthetic biology. It also has shown the potential benefits of collaborations. However, it appeared that most of the teams did not collaborate with external parties. We think this is regrettable. Fortunately, iGEM headquarters agreed with us on this point and collaboration between teams has become a hard requirement to win a silver medal since this year therefore. Finally, it shows that we can conclude that beside the scientific importance, iGEM contributes also to the development of students and advisers.

The complete chapter can be found here.

Back to Top
UNDER CONSTRUCTION
Back to Top

In this chapter we have analysed the role of iGEM in the development and debate about the safety and security of synthetic biology. One of the problems about safety analysis of synthetic biology projects, is the fact that, in contrast to for example the chemical industry, there is too limited statistical data available. We think that iGEM should take the lead in the data collection about synthetic biology. There are multiple ways to do so. First of all, in our opinion it would be wise to consider the introduction of a specific track about biosafety. In that case, teams participating in this track work to create more general knowledge about the safety of synthetic biology. For example, they could do research into biosafety issues of specific constructs or into the real impact of horizontal gene transfer. Another, in our opinion, interesting possibility, could be to start a project, like interlab, about biosafety. In this way, iGEM could start a large-scale and multi-annual project to collect the required data about biosafety and could play a key role in the development of synthetic biology therefore.

We have also researched how safety is respected in other areas and fields. It appears that in many areas the analysis of possible safety issues is done in a more systematic way. Therefore, we think it is important introduce more systematics in the analysis of risks of synthetic biology as well. Risk matrices can help with this. They are probably one of the most widespread tools for risk evaluation. A risk matrix has two dimensions, respectively probability of occurrence/likelihood and impact. It looks at how large the impact is of a specific event and how likely it is that it will happen. These two dimensions create a matrix. The combination of probability and impact will give any event a place on a risk matrix.

The risk matrix is used as basic of our own risk analysis tool. We have developed a hands on safety application that can be used by iGEM teams to analyze the safety issues of their project. In this application aspects such as the used chemicals, types of used micro-organism, etc. will be taken into account. The teams can use the tool to get in a more systematic and a visible insight into the risk issues of their project.

The complete chapter can be found here.

Back to Top

iGEM Toolbox

Introduction

We have have done an extensive analysis about iGEM in order to improve the potential of iGEM even further. As part of this analysis, we have asked iGEM teams to fill out a survey about multiple aspects of iGEM, such as science and education. One of the things we have noticed based on the results of the survey, is the fact that multiple iGEM teams have developed interesting and educative tools. We think that some of the tools would be very useful for other iGEM teams as well. However, currently it is difficult to find a specific tool.

We would like to advise the introduction of an iGEM Toolbox page. Teams that think that they have developed an interesting tool, could register their tool on this page. Other teams can use these tools and it would be especially interesting if iGEM teams could also evaluate the tools afterwards. In this way the iGEM community could for example develop an extensive curriculum, with extensively tested tools, to teach the public about synthetic biology.

As starting point of the toolbox page, we have made an example Toolbox page. On the page you can find a few very interesting education tools, tools that are useful in the lab and policy & practice tools. For this page we have used, in our opinion interesting tools. This page can be used as starting point for the development of an extensive Toolbox page.

Liza de Wilde

MODELING MANAGER

I am a master student Nanobiology. This study program is both technical and biology orientated. Something I also find in the IGEM team. I think working together with people with diverse backgrounds in a team is a great opportunity that can extend my horizon.

Within the team I am the 'Modelling Manager'. This means that I am responsible for the modelling in the project to help the science department in the team. Furthermore I will play a role in the hardware development.

Outside the lab I enjoy cooking and making pies, dancing, and sailing.

Charlotte Koster

GRAPHICS, SAFETY AND HARDWARE MANAGER
#

Hi! I am a master student Life Science & Technology. During my studies I got fascinated by the concept of synthetic biology, so joining iGEM was an obvious choice for me! I am the multitasker of the team. First of all, I'm responsible for the safety, which is an important aspect, we don't want our laser bugs to escape! Furthermore I do all the graphics, so each logo, figure of picture you see is made by me! Lastly, I also take care of a part of the hardware, which is an exciting new field for me, there's a lot to learn! Furthermore, I'll do a lot of labwork and some modelling, a taste of everything!

Whenever I'm not building organisms or laser setups I enjoy playing field hockey at Scoop, making music, going to festivals and concerts and traveling. You can probably imagine that I can't wait to present our laser-shooting-lens-bacteria with our awesome team in Boston!

Lycka Kamoen

SCIENCE MANAGER

I am a master student Life Science & Technology. I enjoy learning new things, which is why I decided to join the iGEM competition. Whithin the team I am the science manager, meaning that I am in charge of the research related aspects of our project. I hope to learn a lot during this competition, including guiding our own research.

Outside the lab I enjoy singing, cooking and having a drink with friends.

Tessa Vergroesen

WIKI MANAGER

I am a Nanobiology bachelor student and a member of the Delft student rowing association Proteus-Eretes. I joined iGEM because I think it will teach me a lot about synthetic biology and teamwork at the same time. I am this years’ wiki manager, meaning that the layout, content and design of our website will be my responsibility.

When I’m not studying, rowing or working on iGEM, you can find me relaxing in the sun, possibly enjoying a book, movie or my iPod.

Outreach

INTERNATIONAL FESTIVAL OF TECHNOLOGY

On 1 – 3 June, the whole campus of the TU Delft was dedicated to bridging the gap between technology, art and music during the International Festival of Technology. The programme consisted of some famous music artists, lectures by scientists and showcasing all art and technology projects of the university and its students. Of course, we as an iGEM team also took part in this amazing event. Since we were working with fluorescence, our project was incorporated in a night tour through the university. The tour went past all hidden treasures of the university, such as the anechoic chamber, and the iGEM lab which were specially illuminated for the occasion. Other students made use of lights and beamers, we used fluorescence, of course!

The tour was completely sold out so there were a lot of people to amaze and educate with our project! The public got to take a look in the world of fluorescence and learned some fun facts on DNA while we could promote our project. There was also an fluffy E. coli giveaway for the person who could most precisely estimate how often you can go to the moon and back with all DNA of one adult. A lot of people were not aware of the (laser)capacities of microorganisms, but the reaction of the crowd was very positive and enthusiastic, which is of course very good to hear! We are happy that we got to inspire and amaze so many people in just one night, and we hope that our Opticoli will continue to do so!


CAMPUS PARTY

The Campus Party is the greatest technological experience of the world which brings together young technologist and aspiring entrepreneurs in a festival of innovation, creativity, science, digital entertainment and entrepreneurship. It was held in Utrecht and this year we were invited as team.

During the day we enjoined multiple talks and workshops about among other things virtual reality and entrepreneurship. We have learned many interesting things we can use for our project and we had interesting conversations with many technologists about our project. In the evening we have presented our own project. Watch the entire presentation on our YouTube channel. Most of the attendees had no biological background and we started with a basic lecture about synthetic biology therefore. During the presentation we asked them multiple question about their opinion about synthetic biology and It appeared that more than 90% of the attendees have a positive outlook towards synthetic biology. After this we off course discussed our project and fortunately most people were very enthusiastic. We are happy that also people from outside our research field are enthusiastic about our project and about synthetic biology in general.

BESSENSAP


The largest Dutch national conference where scientists, journalists and other science communicators could meet up was this year once again held in Amsterdam. As small-scale scientists, participants of iGEM, and of course as scientists of the future, we participated in the Bessensap conference.

Starting of pitching our project to the audience, we gained positive feedback from interested parties. The day was filled with inspiring talks and workshops. For example the keynote speaker talked about activism in science, arguing all scientists should be activists and changing the future for the better. For this, examples were given showing the importance of communication of different perceptions. This also holds for the iGEM competition, where this immediately could be used in our Policy and Practice. Concluding this inspiring day, a final collaboration in public relations was initiated.

NBC WAGENINGEN


The Netherlands Biotechnology Conference (NBC) is the largest conference for researchers and companies related to biotechnology. This year’s edition with the theme “next level biotechnology” was held in Wageningen. Other than inspiring talks and discussions, we got to meet up with other iGEM teams from the Netherlands. It was interesting to see what the other teams picked as a topic and how they enjoyed the first period of iGEM so far. Overall, it was an informative day and we are looking forward to see the other teams again!

  1. Crabtree, J. T. N. L. G. (2006). Solar FAQs Retrieved from http://www.sandia.gov/~jytsao/Solar%20FAQs.pdf
  2. Centraal Bureau voor de Statistiek, "Solar energy data" in Hernieuwbare elektriciteit; productie en vermogen, Centraal Bureau voor de Statistiek, Ed., ed. Den Haag 2015.
  3. IEA. (2016). Energy Technology Perspectives 2016. Retrieved from http://www.iea.org/bookshop/719-Energy_Technology_Perspectives_2016
  4. Index Mundi (2015).World Crude Oil Consumption by Year. Retrieved from http://www.indexmundi.com/energy/
  5. Jutteau, S., Paire, M., Proise, F., Lombez, L., & Guillemoles, J. F. (2015, 14-19 June 2015). Micro solar concentrators: Design and fabrication for microcells arrays. Paper presented at the Photovoltaic Specialist Conference (PVSC), 2015 IEEE 42nd.
  6. Nam, M., Kim, K., Lee, J., Yang, S. S., & Lee, K.-K. (2013). Solar cell packaged by a microlens array and its long-term optical efficiency enhancement. Paper presented at the Proc. of SPIE Vol.
  7. Solar Panel Manufacturers.(2016). Retrieved from http://www.enfsolar.com/directory/panel
  8. Wezel, B. v. (2015). Elektriciteit in Nederland. CBS.
  9. Wirth, H. (2016). Recent Facts about Photovoltaics in Germany. Fraunhofer ISE,.
  10. World Energy Council report confirms global abundance of energy resources and exposes myth of peak oil.(2013). Retrieved from https://www.worldenergy.org/news-and-media/press-releases/world-energy-council-report-confirms-global-abundance-of-energy-resources-and-exposes-myth-of-peak-oil/
  11. Xie, J., Wu, K., Cheng, J., Li, P., & Zheng, J. (2015). The micro-optic photovoltaic behavior of solar cell along with microlens curved glass substrate. Energy Conversion and Management, 96, 315-321.