Difference between revisions of "Team:USP UNIFESP-Brazil"

Line 1: Line 1:
 
<html>
 
<html>
 
<style>
 
<style>
 +
/* Wiki Hacks - START */
 +
/* Author: Pieter van Boheemen */
 +
/* Team: TU Delft */
 
#top_title {display:none;}
 
#top_title {display:none;}
 
#HQ_page p {font-size: 12pt;}
 
#HQ_page p {font-size: 12pt;}
Line 20: Line 23:
 
#search-controls { display:none; }
 
#search-controls { display:none; }
 
h3#siteSub { display: none;}
 
h3#siteSub { display: none;}
 
 
#contentSub {display: none;}
 
#contentSub {display: none;}
 
ul {list-style-image:none}
 
ul {list-style-image:none}
Line 29: Line 31:
 
<link rel="stylesheet" type="text/css" href="https://2016.igem.org/Template:USP_UNIFESP-Brazil/CSS2?action=raw&ctype=text/css" />
 
<link rel="stylesheet" type="text/css" href="https://2016.igem.org/Template:USP_UNIFESP-Brazil/CSS2?action=raw&ctype=text/css" />
  
<div class="row topo">
+
<div class="row topo">
<div class="small-2 text-center columns">
+
<div class="small-2 text-center columns">
    <a href="https://2016.igem.org/wiki/index.php?title=Team:USP_UNIFESP-Brazil">
+
<img style="max-height: 120px;" src="https://static.igem.org/mediawiki/2016/thumb/f/f6/T--USP_UNIFESP-Brazil--LOGO.png/370px-T--USP_UNIFESP-Brazil--LOGO.png" />
        <img   style="max-height: 120px;" src="https://static.igem.org/mediawiki/2016/thumb/f/f6/T--USP_UNIFESP-Brazil--LOGO.png/370px-T--USP_UNIFESP-Brazil--LOGO.png" />
+
</div>
    </a>
+
<div class="small-10 columns">
</div>
+
<div class="row">
<div class="small-10 columns">
+
<div class="small-6 columns">
<div class="row">
+
<p>AlgAranha Team USP-UNIFESP BRASIL</p>
<div class="small-6 columns">
+
</div>
<p>AlgAranha Team USP-UNIFESP BRASIL</p>
+
<div class="small-6 columns">
</div>
+
<p style="text-align: right;"><a href="https://2016.igem.org/">iGEM 2016</a></p>
<div class="small-6 columns">
+
</div>
<p style="text-align: right;"><a href="https://2016.igem.org/">iGEM 2016</a></p>
+
</div>
</div>
+
<div class="row">
</div>
+
<div class="small-12 columns">
<div class="row">
+
<ul class="menu">
<div class="small-12 columns">
+
<li><a href="https://2016.igem.org/wiki/index.php?title=Team:USP_UNIFESP-Brazil">Home</a></li>
<ul class="menu">
+
<li><a href="https://2016.igem.org/Team:USP_UNIFESP-Brazil/Team">Team</a></li>
<li><a href="https://2016.igem.org/Team:USP_UNIFESP-Brazil/Team">Team</a></li>
+
<li><a href="https://2016.igem.org/Team:USP_UNIFESP-Brazil/Project" class="active">Project</a></li>
<li><a href="https://2016.igem.org/Team:USP_UNIFESP-Brazil/Project">Project</a></li>
+
<li><a href="https://2016.igem.org/Team:USP_UNIFESP-Brazil/Parts">Parts</a></li>
<li><a href="https://2016.igem.org/Team:USP_UNIFESP-Brazil/Parts">Parts</a></li>
+
<li><a href="https://2016.igem.org/Team:USP_UNIFESP-Brazil/Human_Practices">Human Practices</a></li>
<li><a href="https://2016.igem.org/Team:USP_UNIFESP-Brazil/Interlab" class="active">Interlab</a></li>
+
<li><a href="https://2016.igem.org/Team:USP_UNIFESP-Brazil/Awards">Awards</a></li>
<li><a href="https://2016.igem.org/Team:USP_UNIFESP-Brazil/Human_Practices">Human Practices</a></li>
+
<li><a href="https://2016.igem.org/Team:USP_UNIFESP-Brazil/Attributions">Attributions</a></li>
<li><a href="https://2016.igem.org/Team:USP_UNIFESP-Brazil/Awards">Awards</a></li>
+
                                                <li><a href="https://2016.igem.org/Team:USP_UNIFESP-Brazil/Attributions">Attributions</a></li>
<li><a href="https://2016.igem.org/Team:USP_UNIFESP-Brazil/Attributions">Attributions</a></li>
+
</ul>
 
+
</div>
</ul>
+
</div>
</div>
+
</div>
</div>
+
</div>
</div>
+
</div>
+
 
+
<div class="row meio">
+
 
+
    <div class="small-10 columns small-offset-2 titulo-verde">
+
        <div class="small-11 small-offset-1 columns"><a name="des"></a>
+
            <h2>Table of contents</h2>
+
        </div>
+
  </div>
+
   
+
    <div class="column half_size" >
+
        <div class="highlight">
+
 
+
            <div class="small-10 columns small-offset-2">
+
            <div class="small-10 small-offset-1 columns">
+
              <center>
+
                    <br>
+
                    <p class="black"><a href="#Introduction">Introduction</a></p>
+
                    <p class="black"><a href="#Macroscopic_analysis">Macroscopic analysis</a></p>
+
                    <p class="black"><a href="#Fluorescence_Spectrometer_analysis">Fluorescence Spectrometer analysis</a></p>
+
                    <p class="black"><a href="#Plate_Reader_analysis">Plate Reader analysis</a></p>
+
                    <p class="black"><a href="#Flow_Citometry_Assay">Flow Citometry Assay</a></p>
+
                    <p class="black"><a href="#Microscopic_analysis">Microscopic analysis/single cell: Fluorescence Microscopy and Quantitative analysis by IMAGEJ</a></p> 
+
                    <p class="black"><a href="#Discussion">Discussion</a></p>   
+
                   
+
                    <br>
+
              </center>
+
            </div>
+
            </div>
+
           
+
        </div>
+
    </div>
+
   
+
 
+
   
+
    <div class="small-10 columns small-offset-2 titulo-verde"><a id="Introduction"></a>
+
        <div class="small-11 small-offset-1 columns"><a name="des" ></a>
+
            <h2>Introduction</h2>
+
        </div>
+
  </div>
+
    <div class="small-10 columns small-offset-2">
+
            <div class="small-10 small-offset-1 columns">
+
   
+
                <p class="black">
+
                In the twelfth iGEM edition happens the third Interlab Study. This study is based on the characterization of standard biological parts and, as standard parts, it is fundamental to observe reproducibility and repeatability on their behaviour. For instance, even well characterized promoters in a given strain of E. coli may behave reasonably different in another strain. Acknowledging this challenge, the Interlab Studies is a way to gather experiments from all around the world and provide a more unified understanding about the fundamental building blocks of Synthetic Biology. Until last year, each research team had its own strains, plasmids and protocols, however, in an attempt to standardize the obtained data, specific protocols and calibration samples were provided for each iGEM team attending the Interlab 2016. With this approach, we can construct a rich knowledge base of standard biological parts, together with several study cases of different protocols and other details. The value this have to the whole community of Synthetic Biology is beyond doubt.
+
                </p>
+
                <p class="black">
+
                We have done not only the standard plate reader, cuvette-based and flow cytometry assays, but also tested for better measuring conditions (LB and M9 media) and for alternative methods ranging from DIY ones (digital camera and fluorimetric-based methods) to single cell analysis by fluorescence microscopy. We have also evaluated the promoter strength of all devices by Relative Promoter Units [2] using DH5α E. coli harbouring all devices and controls. Results show interesting differences: Device 2 (J23106) shows half the strength it would be expected in the original library. Thus, we have fulfilled both the InterLab study the extra credit requirements by searching for optimized measurement protocols and generating new cheaper and accessible approaches for assessing promoter strength.
+
                </p>
+
                <p class="black"><b>Test Devices and controls:</b></p>
+
                <p class="black">We have received three Test Devices and one positive control derived from the Anderson’s library, a constitutive promoter library generated by single mutations, which affected the promoters’ strength in different ways. The devices are a combination of the Anderson’s promoters, RBS, a GFP reporter gene and a terminator. The negative control consist only on an inert sequence derived from the TetR operator. All devices and controls have the pSB1C3 plasmid (high-copy number) as backbone. Following the iGEM protocol, all plasmids were transformed into DH5α E. coli cells - following the iGEM transformation protocol - which were used as samples for all the different experiments. You can find more information about the devices below and on <b>figure 1</b>.</p>
+
                <p class="black"><b>Positive control (PC) - I20270 in pSB1C3 </b></p>
+
                <p class="black"><b>Negative control (NC) -R0040 in pSB1C3</b></p>
+
                <p class="black"><b>Test Device 1 (TD1) - J23101.B0034.E0040.B0015 in pSB1C3</b></p>
+
                <p class="black"><b>Test Device 2 (TD2) - J23106.B0034.E0040.B0015 in pSB1C3</b></p>
+
                <p class="black"><b>Test Device 3 (TD3) - J23117.B0034.E0040.B0015 in pSB1C3</b></p>
+
            </div>
+
        </div>
+
    <div class="small-10 columns small-offset-2">
+
            <div class="small-10 small-offset-1 columns">
+
 
+
                <div class="small-10 columns small-offset-2">
+
                    <div class="small-12 columns">
+
 
+
                        <img src="https://static.igem.org/mediawiki/2016/0/09/TT--USP_UNIFESP-Brazil--interlab_figure1.png" style="margin-bottom:20px; margin-top:0px;"/>
+
                        <p class="fig-label">
+
             
+
                        </p>
+
                    </div>
+
                </div>
+
               
+
                <p class="black"><b>Multi-scale combined experiments:</b></p>
+
           
+
            </div>
+
        </div>
+
   
+
   
+
    <div class="small-10 columns small-offset-2 titulo-verde"><a id="Macroscopic_analysis"></a>
+
        <div class="small-11 small-offset-1 columns"><a name="des" ></a>
+
            <h2>Macroscopic analysis</h2>
+
        </div>
+
  </div>
+
   
+
   
+
<div class="column half_size" >
+
    <div class="highlight">
+
 
+
        <div class="small-10 columns small-offset-2">
+
            <div class="small-10 small-offset-1 columns">
+
   
+
                <p class="black">
+
                Imagine you are a Biohacker or someone very interested in Science stuff, but you have no money… How could you avoid expensive high-end equipment and yet, still obtain some data about the promoters you love?
+
                </p>
+
                <p class="black">
+
                In order to do so and draw a sketch of our promoter’s strength we have followed and updated the 2015 <a href="https://2015.igem.org/Team:Brasil-USP/interlabstudy">USP_Brazil iGEM team approach</a> for an inexpensive and quick analysis by taking digital photos and analyzing them on open-source softwares for image processing (<a href="https://www.gimp.org/">GIMP</a> and <a href="https://imagej.nih.gov/ij/">ImageJ</a>)
+
                <p class="black">
+
                All test devices and controls were grown on both solid (LB-Agar) and Liquid (LB and M9) media and photos were taken by a regular cellphone under the effect of fluorescent white or blue light lamps (for exciting GFP reporter molecules). The choice of comparing both LB and M9 liquid media was based on an extensive number of reports regarding the influence of auto fluorescence of LB on measurements. Thus, we wanted to have check if the outcome of this effect would be so strong that it could be visually detected.
+
                </p>
+
                <p class="black">
+
                On a direct analysis under the blue light lamp, we can observe that there is a huge difference between M9 and LB samples (Figure 2). While we can easily observe different degrees of GFP expression on M9, it is almost impossible to do so on LB due to its intrinsic fluorescence. Even though, on both media, TD1 seems to be the strongest promoter, followed by TD2, which is similar to PC and stronger than TD3 (easier to see on M9). The last test device, TD3, seems to behave very similarly to the negative control. To sum up, at a first glance, our promoter’s strength rank is:
+
                </p>
+
 
+
                <center><b>TD1 > TD2 = PC > TD3 = NC</b></center>
+
            </div>
+
        </div>
+
    </div>
+
</div>  
+
  
    <div class="small-10 columns small-offset-2">
+
<div class="row meio">
        <div class="small-12 columns">
+
  
        <img src="https://static.igem.org/mediawiki/2016/b/bc/TT--USP_UNIFESP-Brazil--interlab_figure2.png" style="margin-bottom:20px; margin-top:0px;"/>
+
<div class="small-8 columns small-offset-2 bread">
            <p class="fig-label">
+
             
+
                        Figure 2 Comparison between fluorescence of Test Devices on both M9 and LB. While M9 allows us to easily compare fluorescence intensities the same is not true for LB samples due to its auto fluorescence effect.
+
            </p>
+
    </div>
+
    </div>
+
  
 +
<div class="small-2 columns">
 +
<p><a href="#des">Description</a></p>
 +
</div>
  
    <div class="small-10 columns small-offset-2 titulo-verde"><a id="Fluorescence_Spectrometer_analysis"></a>
+
<div class="small-2 columns">
        <div class="small-11 small-offset-1 columns"><a name="des" ></a>
+
<p><a href="#exp">Experiments</a></p>
            <h2>Fluorescence Spectrometer analysis</h2>
+
</div>
        </div>
+
    </div>
+
   
+
    <div class="column half_size" >
+
    <div class="highlight">
+
  
        <div class="small-10 columns small-offset-2">
+
<div class="small-2 columns">
            <div class="small-10 small-offset-1 columns">
+
<p><a href="#pro">Proof of Concept</a></p>
   
+
</div>
                <p class="black">
+
                Coloque o texto aqui
+
                </p>
+
            </div>
+
        </div>
+
    </div>
+
    </div>
+
       
+
    <div class="small-10 columns small-offset-2 titulo-verde"><a id="Plate_Reader_analysis"></a>
+
        <div class="small-11 small-offset-1 columns"><a name="des" ></a>
+
            <h2>Plate Reader analysis</h2>
+
        </div>
+
    </div>
+
+
  <div class="column half_size" >
+
    <div class="highlight">
+
  
        <div class="small-10 columns small-offset-2">
+
<div class="small-2 columns">
            <div class="small-10 small-offset-1 columns">
+
<p><a href="#res">Results</a></p>
   
+
</div>
                <p class="black">
+
                Coloque o texto aqui
+
                </p>
+
            </div>
+
        </div>
+
    </div>
+
    </div>
+
  
    <div class="small-10 columns small-offset-2 titulo-verde"><a id="Microscopic_analysis"></a>
+
<div class="small-4 columns">
        <div class="small-11 small-offset-1 columns"><a name="des" ></a>
+
<p><a href="#not">Notebook</a></p>
            <h2><font size='5'>Microscopic analysis/single cell:</font><font size='2'> Fluorescence Microscopy and Quantitative analysis by IMAGEJ</font></h3>
+
</div>
        </div>
+
       
+
    </div>
+
+
  <div class="column half_size" >
+
    <div class="highlight">
+
  
        <div class="small-10 columns small-offset-2">
+
<div class="small-4 columns">
            <div class="small-10 small-offset-1 columns">
+
<p><a href="#saf">Safety</a></p>
   
+
</div>
                <p class="black">
+
                Coloque o texto aqui
+
                </p>
+
            </div>
+
        </div>
+
    </div>
+
    </div>
+
  
    <div class="small-10 columns small-offset-2 titulo-verde"><a id="Discussion"></a>
+
<div class="small-4 columns">
        <div class="small-11 small-offset-1 columns"><a name="des" ></a>
+
<p><a href="#mod">Modelling</a></p>
            <h2>Discussion</h2>
+
</div>
        </div>
+
    </div>
+
+
  <div class="column half_size" >
+
    <div class="highlight">
+
  
        <div class="small-10 columns small-offset-2">
+
</div>
            <div class="small-10 small-offset-1 columns">
+
   
+
                <p class="black">
+
                Coloque o texto aqui
+
                </p>
+
            </div>
+
        </div>
+
    </div>
+
    </div>
+
   
+
  
</div>
+
<div class="small-10 columns small-offset-2 titulo-verde">
 +
<div class="small-11 small-offset-1 columns"><a name="des"></a>
 +
<h2>Description</h2>
 +
</div>
 +
</div>
 +
<div class="small-10 columns small-offset-2">
 +
<div class="small-10 small-offset-1 columns">
 +
<p class="black">The protein structure of spider silk is composed of two constant terminal domains and a variable middle structural domain. Our design uses the substitution of this middle domain by a protein of interest, as used by Team:UCLA in 2014. In our case, we are using enzybiotics.</p>
 +
</div>
 +
</div>
 +
<div class="small-10 columns small-offset-2">
 +
<div class="small-12 columns">
 +
<p><img style="margin-bottom: 20px;" src="https://static.igem.org/mediawiki/2016/f/fd/T--USP_UNIFESP-Brazil--ProjectFig0.png" /></p>
 +
</div>
 +
</div>
 +
<div class="small-10 columns small-offset-2">
 +
<div class="small-10 small-offset-1 columns">
 +
<p class="black">It is known that certain repetitive sequences of amino acids confer specific properties to these structures and proteins in tissue, allowing one to obtain materials with desired characteristics through genetic manipulation of these structural domains. The poly-alanine domains (poly(A/GA) (Glycine-Alanine) in MaSp1 proteins, MaSp2 and MISP are associated with formation of beta-sheets and the production of strong fibers, while repeating sequences "GPGGx" and "GGX" as in Flag protein, preferably generates an elastic beta-spiral region, which provides elasticity (Tokareva et al. 2014). In addition, terminal domains (N-terminal NT and C-terminal CT) are highly conserved both among species and different types of silk (Garb et al. 2010), which suggests they play important roles in the formation of silk and not in the generation of its mechanical properties per se. So the integration of the enzybiotic sequence to silk by flanking it with NT and CT should make the proteins to be polymerized along with the structural silk proteins (MaSp) when both are expressed.</p>
 +
<p class="black">The design for the plasmids can be separated in two “blocks”: an algae expression vector and, as the GOI (gene of interest) region in the vector, the sequence for the protein we want to put into the silk, along with NT and CT sequences. This protein coding sequence is flanked with Xho l and Bam HI. We optimized the codons for the expression in C. reinhardtii nucleus (Fuhrmann et al. 1999) and also inserted rubisco introns in the promoter hsp70A/rbcs2 sequence, in the Sh-ble sequence and in the terminal region RbcS2 3’ UTR, aiming to increase the expression of the protein of interest (Eichler-Stahlberg et al. 2009, Lumbreras et al. 1998). Fig. 3 shows the generic cassette for expression.</p>
 +
</div>
 +
</div>
 +
<div class="small-10 columns small-offset-2">
 +
<div class="small-8 small-offset-3 columns reference">
 +
<p class="black">References:</p>
 +
<p class="black">Team:UCLA 2014 iGEM project &gt;https://2014.igem.org/Team:UCLA&gt;</p>
 +
<p class="black">Eichler-Stahlberg A, Weisheit W, Ruecker O, Heitzer M (2009) Strategies to facilitate transgene expression in Chlamydomonas reinhardtii. Planta 229 (4): 873-883. DOI: 10.1 007/s00425-008-0879-x</p>
 +
<p class="black">Fuhrmann M, Oertel W, Hegemann P (1999) A synthetic gene coding for the green fluorescent protein (GFP) is a versatile reporter in Chlamydomonas reinhardtii+. The Plant Journal 19 (3): 353-361. DOI: 10.1046/j.1365-313x.1999.00526.x</p>
 +
<p class="black">Garb JE, Ayoub NA, Hayashi CY (2010) Untangling spider silk evolution with spidroin terminal domains. BMC Evolutionary Biology 10 (1): 243. DOI: 10.1186/1471-2148-10-2 43</p>
 +
<p class="black">Tokareva O, Jacobsen M, Buehler M, Wong J, Kaplan D (2014) Structure–function– property–design interplay in biopolymers: Spider silk. Acta Biomaterialia 10 (4): 1612-1626. DOI: 10.1016/j.actbio.2013.08.020</p>
 +
</div>
 +
</div>
 +
<div class="small-10 columns small-offset-2 titulo-verde">
 +
<div class="small-11 small-offset-1 columns"><a name="exp"></a>
 +
<h2>Experiments</h2>
 +
</div>
 +
</div>
 +
<div class="small-10 columns small-offset-2">
 +
<div class="small-10 small-offset-1 columns">
 +
<p class="black">In our project, we propose to explore the modular characteristic of spider silk proteins, by using it as an immobilization support to other proteins. We were inspired by UCLA’s iGEM Team’s project in 2014 and 2015, where they presented the idea of using silk fibers to integrate other functional proteins to the silk’s structure. We tried to expand on this concept by expressing proteins with antimicrobial activity, enzybiotics (Fig.1). By combining these proteins and their properties, we tried to tackle a major problem with wound dressings for burn victims.</p>
 +
</div>
 +
</div>
 +
<div class="small-10 columns small-offset-2">
 +
<div class="small-12 columns">
 +
<img style="margin-bottom: 20px;" src="https://static.igem.org/mediawiki/2016/5/56/T--USP_UNIFESP-Brazil--ProjectFig1.png" />
 +
<p class="fig-label">Figure 1: Schematic representation of spider silk proteins and chimeric protein. A: MaSp1 - Major ampullate spidroin 1, MaSp2 - Major ampullate spidroin 2 B: Chimeric protein of a enzybiotic with N and C terminals domains of spider silk proteins.</p>
 +
</div>
 +
</div>
 +
<div class="small-10 columns small-offset-2">
 +
<div class="small-10 small-offset-1 columns">
 +
<p class="black">We tried to express the recombinant proteins, spider silk proteins and enzybiotics in the microalgae Chlamydomonas reinhardtii strains by nuclear transformation. Each recombinant strain would express a different protein, which would contain the N- and C-terminal polymerization domains from native spider silk proteins. These domains are essential to the polymerization step and, subsequently, for production of a material very similar to silk. Having been able to build our design, the antimicrobial activity and mechanical properties of the product would be evaluated, as well as the system productivity, shedding some light on spider silk-based immobilization support effectiveness, even for other biotechnological applications, such as the one idealized here. However, there are other possible applications with economic and academic interest.</p>
 +
</div>
 +
</div>
 +
<div class="small-10 columns small-offset-2">
 +
<div class="small-12 columns">
 +
<img src="https://static.igem.org/mediawiki/2016/7/77/T--USP_UNIFESP-Brazil--ProjectOverview.png" style="margin-bottom:20px;" />
 +
<p class="fig-label">Figure 2: Project overview. Schematic representation of spider web structure from macro to nano scale. A representation of: enzybiotic protein from a bacteriophage; a spider silk protein with repetitive domains and N and C terminals; host expression system Chlamydomonas reinhardtii and a chimeric protein envisioned in this project; and the final product, a biopatch produced from recombinant silk proteins and chimeric proteins.</p>
 +
</div>
 +
</div>
 +
<div class="small-10 columns small-offset-2 titulo-verde">
 +
<div class="small-11 small-offset-1 columns"><a name="pro"></a>
 +
<h2>Proof of concept</h2>
 +
</div>
 +
</div>
 +
<div class="small-10 columns small-offset-2">
 +
<div class="small-10 small-offset-1 columns">
 +
<p class="black">Microalgae present various desirable characteristics in an expression system: fast growth, fast making of stable transgenic lineages, scalability and low production cost, for example ​(Wijffels 2013, Rosenberg 2008)​. Unlike bacterial expression systems, microalgae are capable of producing and secreting complex proteins with post-transcriptional modifications. Mammalian cells also wouldn’t be an optimal expression system when considering production costs. Molecules such as monoclonal antibodies (mAbs) are mainly produced in these cells and their average production cost in this system is estimated to be $ 150.00 per gram of raw materials (Dove 2002), but the estimated value for algae reaches US $ 0.002 per liter, making them potential competitors (Mayfield et al. 2003). Another problem with spider silk expression is the G-C rich content of its sequences, often clogging the heterologous expression of this kind of protein in non-GC-rich systems (Yang et al. 2016). But Chlamydomonas reinhardtii presents a GC-rich genome, which may play an important role in spider silk protein expression.</p>
 +
</div>
 +
</div>
 +
<div class="small-10 columns small-offset-2 titulo-verde">
 +
<div class="small-11 small-offset-1 columns"><a name="res"></a>
 +
<h2>Results</h2>
 +
</div>
 +
</div>
 +
<div class="small-10 columns small-offset-2">
 +
<div class="small-10 small-offset-1 columns">
 +
<p class="black">Immobilization techniques are applied to a wide range of treatments and processes, from medical applications to biotransformations in industrial plants. This stabilization is normally achieved by protein binding to a scaffold (Liese and Hilterhaus 2013). Recent studies explored spider silks as a possible immobilization support (Blüm et al. 2013, Monier 2013).  Spider silk is known mainly for its tensile strength and fracture resistance, but also exhibits elasticity, adhesion, biocompatibility and low degradation. Its strength can be compared to Kevlar synthetic polymer, which is composed of aramid and is used in for manufacturing body armor (Lewis 2006). Furthermore, medical applications are possible due to its biocompatibility and biodegradability, as coating for implants and transplanted organs, drug delivery and scaffolding for cell lines (Lewis 2006, Hardy et al. 2008, Kluge et al. 2008).</p>
 +
</div>
 +
</div>
 +
<div class="small-10 columns small-offset-2 titulo-verde">
 +
<div class="small-11 small-offset-1 columns"><a name="not"></a>
 +
<h2>Notebook</h2>
 +
</div>
 +
</div>
 +
<div class="small-10 columns small-offset-2">
 +
<div class="small-10 small-offset-1 columns">
 +
<p class="black">Soon&#8230;</p>
 +
</div>
 +
</div>
 +
<div class="small-10 columns small-offset-2 titulo-verde">
 +
<div class="small-11 small-offset-1 columns"><a name="saf"></a>
 +
<h2>Safety</h2>
 +
</div>
 +
</div>
 +
<div class="small-10 columns small-offset-2 titulo-verde">
 +
<div class="small-11 small-offset-1 columns"><a name="mod"></a>
 +
<h2>Modelling</h2>
 +
</div>
 +
</div>
 +
<div class="small-10 columns small-offset-2">
 +
<div class="small-10 small-offset-1 columns">
 +
<p class="black">Team:UCLA 2014 iGEM project &lt;https://2014.igem.org/Team:UCLA&gt;</p>
 +
<p class="black">Team:UCLA 2015 iGEM project &lt;https://2015.igem.org/Team:UCLA&gt;</p>
 +
<p class="black">Blüm C, Nichtl A, Scheibel T (2013) Spider Silk Capsules as Protective Reaction Containers for Enzymes. Advanced Functional Materials 24 (6): 763-768. DOI: 10.1002/adfm.201302100</p>
 +
<p class="black">Dove A (2002) Uncorking the biomanufacturing bottleneck. Nature Biotechnology 20 (8): 777-779. DOI: 10.1038/nbt0802-777</p>
 +
<p class="black">Hardy J, Römer L, Scheibel T (2008) Polymeric materials based on silk proteins. Polymer 49 (20): 4309-4327. DOI: 10.1016/j.polymer.2008.08.006</p>
 +
<p class="black">Kluge J, Rabotyagova O, Leisk G, Kaplan D (2008) Spider silks and their applications. Trends in Biotechnology 26 (5): 244-251. DOI: 10.1016/j.tibtech.2008.02.006</p>
 +
<p class="black">Lewis R (2006) Spider Silk: Ancient Ideas for New Biomaterials. Chemical Reviews 106 (9): 3762-3774. DOI: 10.1021/cr010194g</p>
 +
<p class="black">Liese A, Hilterhaus L (2013) Evaluation of immobilized enzymes for industrial applications. Chemical Society Reviews 42 (15): 6236. DOI: 10.1039/c3cs35511j</p>
 +
<p class="black">Mayfield SP, Franklin SE, Lerner RA (2003) Expression and assembly of a fully active antibody in algae. Proceedings of the National Academy of Sciences 100 (2): 438-442. DOI: 10.1073/pnas.0237108100</p>
 +
<p class="black">Monier M (2013) Immobilization of β-galactosidase from Escherichia coli onto modified natural silk fibers. Journal of Applied Polymer Science 130 (4): 2923-2931. DOI: 10.1002/app.39475</p>
 +
<p class="black">Rosenberg JN, Oyler GA, Loy W, Betenbaugh MJ. A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Curr Opin Biotechnol. 2008;19(5):430–6.</p>
 +
<p class="black">Wijffels RH, Kruse O, Hellingwerf KJ. Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae. Curr Opin Biotechnol. 2013 Jun;24(3):405–13. 43.</p>
 +
<p class="black">Yang X-Y, Li C-R, Lou R-H, Wang Y-M, Zhang W-X, Chen H-Z, Huang Q-S, Han Y-X, Jiang J-D, You X-F (2007) In vitro activity of recombinant lysostaphin against Staphylococcus aureus isolates from hospitals in Beijing, China. Journal of Medical Microbiology 56 (1): 71-76. DOI: 10.1099/jmm.0.46788-0</p>
 +
</div>
 +
</div>
 +
</div>
 
</body>
 
</body>
 
</html>
 
</html>

Revision as of 21:06, 17 October 2016

Description

The protein structure of spider silk is composed of two constant terminal domains and a variable middle structural domain. Our design uses the substitution of this middle domain by a protein of interest, as used by Team:UCLA in 2014. In our case, we are using enzybiotics.

It is known that certain repetitive sequences of amino acids confer specific properties to these structures and proteins in tissue, allowing one to obtain materials with desired characteristics through genetic manipulation of these structural domains. The poly-alanine domains (poly(A/GA) (Glycine-Alanine) in MaSp1 proteins, MaSp2 and MISP are associated with formation of beta-sheets and the production of strong fibers, while repeating sequences "GPGGx" and "GGX" as in Flag protein, preferably generates an elastic beta-spiral region, which provides elasticity (Tokareva et al. 2014). In addition, terminal domains (N-terminal NT and C-terminal CT) are highly conserved both among species and different types of silk (Garb et al. 2010), which suggests they play important roles in the formation of silk and not in the generation of its mechanical properties per se. So the integration of the enzybiotic sequence to silk by flanking it with NT and CT should make the proteins to be polymerized along with the structural silk proteins (MaSp) when both are expressed.

The design for the plasmids can be separated in two “blocks”: an algae expression vector and, as the GOI (gene of interest) region in the vector, the sequence for the protein we want to put into the silk, along with NT and CT sequences. This protein coding sequence is flanked with Xho l and Bam HI. We optimized the codons for the expression in C. reinhardtii nucleus (Fuhrmann et al. 1999) and also inserted rubisco introns in the promoter hsp70A/rbcs2 sequence, in the Sh-ble sequence and in the terminal region RbcS2 3’ UTR, aiming to increase the expression of the protein of interest (Eichler-Stahlberg et al. 2009, Lumbreras et al. 1998). Fig. 3 shows the generic cassette for expression.

References:

Team:UCLA 2014 iGEM project >https://2014.igem.org/Team:UCLA>

Eichler-Stahlberg A, Weisheit W, Ruecker O, Heitzer M (2009) Strategies to facilitate transgene expression in Chlamydomonas reinhardtii. Planta 229 (4): 873-883. DOI: 10.1 007/s00425-008-0879-x

Fuhrmann M, Oertel W, Hegemann P (1999) A synthetic gene coding for the green fluorescent protein (GFP) is a versatile reporter in Chlamydomonas reinhardtii+. The Plant Journal 19 (3): 353-361. DOI: 10.1046/j.1365-313x.1999.00526.x

Garb JE, Ayoub NA, Hayashi CY (2010) Untangling spider silk evolution with spidroin terminal domains. BMC Evolutionary Biology 10 (1): 243. DOI: 10.1186/1471-2148-10-2 43

Tokareva O, Jacobsen M, Buehler M, Wong J, Kaplan D (2014) Structure–function– property–design interplay in biopolymers: Spider silk. Acta Biomaterialia 10 (4): 1612-1626. DOI: 10.1016/j.actbio.2013.08.020

Experiments

In our project, we propose to explore the modular characteristic of spider silk proteins, by using it as an immobilization support to other proteins. We were inspired by UCLA’s iGEM Team’s project in 2014 and 2015, where they presented the idea of using silk fibers to integrate other functional proteins to the silk’s structure. We tried to expand on this concept by expressing proteins with antimicrobial activity, enzybiotics (Fig.1). By combining these proteins and their properties, we tried to tackle a major problem with wound dressings for burn victims.

Figure 1: Schematic representation of spider silk proteins and chimeric protein. A: MaSp1 - Major ampullate spidroin 1, MaSp2 - Major ampullate spidroin 2 B: Chimeric protein of a enzybiotic with N and C terminals domains of spider silk proteins.

We tried to express the recombinant proteins, spider silk proteins and enzybiotics in the microalgae Chlamydomonas reinhardtii strains by nuclear transformation. Each recombinant strain would express a different protein, which would contain the N- and C-terminal polymerization domains from native spider silk proteins. These domains are essential to the polymerization step and, subsequently, for production of a material very similar to silk. Having been able to build our design, the antimicrobial activity and mechanical properties of the product would be evaluated, as well as the system productivity, shedding some light on spider silk-based immobilization support effectiveness, even for other biotechnological applications, such as the one idealized here. However, there are other possible applications with economic and academic interest.

Figure 2: Project overview. Schematic representation of spider web structure from macro to nano scale. A representation of: enzybiotic protein from a bacteriophage; a spider silk protein with repetitive domains and N and C terminals; host expression system Chlamydomonas reinhardtii and a chimeric protein envisioned in this project; and the final product, a biopatch produced from recombinant silk proteins and chimeric proteins.

Proof of concept

Microalgae present various desirable characteristics in an expression system: fast growth, fast making of stable transgenic lineages, scalability and low production cost, for example ​(Wijffels 2013, Rosenberg 2008)​. Unlike bacterial expression systems, microalgae are capable of producing and secreting complex proteins with post-transcriptional modifications. Mammalian cells also wouldn’t be an optimal expression system when considering production costs. Molecules such as monoclonal antibodies (mAbs) are mainly produced in these cells and their average production cost in this system is estimated to be $ 150.00 per gram of raw materials (Dove 2002), but the estimated value for algae reaches US $ 0.002 per liter, making them potential competitors (Mayfield et al. 2003). Another problem with spider silk expression is the G-C rich content of its sequences, often clogging the heterologous expression of this kind of protein in non-GC-rich systems (Yang et al. 2016). But Chlamydomonas reinhardtii presents a GC-rich genome, which may play an important role in spider silk protein expression.

Results

Immobilization techniques are applied to a wide range of treatments and processes, from medical applications to biotransformations in industrial plants. This stabilization is normally achieved by protein binding to a scaffold (Liese and Hilterhaus 2013). Recent studies explored spider silks as a possible immobilization support (Blüm et al. 2013, Monier 2013). Spider silk is known mainly for its tensile strength and fracture resistance, but also exhibits elasticity, adhesion, biocompatibility and low degradation. Its strength can be compared to Kevlar synthetic polymer, which is composed of aramid and is used in for manufacturing body armor (Lewis 2006). Furthermore, medical applications are possible due to its biocompatibility and biodegradability, as coating for implants and transplanted organs, drug delivery and scaffolding for cell lines (Lewis 2006, Hardy et al. 2008, Kluge et al. 2008).

Notebook

Soon…

Safety

Modelling

Team:UCLA 2014 iGEM project <https://2014.igem.org/Team:UCLA>

Team:UCLA 2015 iGEM project <https://2015.igem.org/Team:UCLA>

Blüm C, Nichtl A, Scheibel T (2013) Spider Silk Capsules as Protective Reaction Containers for Enzymes. Advanced Functional Materials 24 (6): 763-768. DOI: 10.1002/adfm.201302100

Dove A (2002) Uncorking the biomanufacturing bottleneck. Nature Biotechnology 20 (8): 777-779. DOI: 10.1038/nbt0802-777

Hardy J, Römer L, Scheibel T (2008) Polymeric materials based on silk proteins. Polymer 49 (20): 4309-4327. DOI: 10.1016/j.polymer.2008.08.006

Kluge J, Rabotyagova O, Leisk G, Kaplan D (2008) Spider silks and their applications. Trends in Biotechnology 26 (5): 244-251. DOI: 10.1016/j.tibtech.2008.02.006

Lewis R (2006) Spider Silk: Ancient Ideas for New Biomaterials. Chemical Reviews 106 (9): 3762-3774. DOI: 10.1021/cr010194g

Liese A, Hilterhaus L (2013) Evaluation of immobilized enzymes for industrial applications. Chemical Society Reviews 42 (15): 6236. DOI: 10.1039/c3cs35511j

Mayfield SP, Franklin SE, Lerner RA (2003) Expression and assembly of a fully active antibody in algae. Proceedings of the National Academy of Sciences 100 (2): 438-442. DOI: 10.1073/pnas.0237108100

Monier M (2013) Immobilization of β-galactosidase from Escherichia coli onto modified natural silk fibers. Journal of Applied Polymer Science 130 (4): 2923-2931. DOI: 10.1002/app.39475

Rosenberg JN, Oyler GA, Loy W, Betenbaugh MJ. A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Curr Opin Biotechnol. 2008;19(5):430–6.

Wijffels RH, Kruse O, Hellingwerf KJ. Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae. Curr Opin Biotechnol. 2013 Jun;24(3):405–13. 43.

Yang X-Y, Li C-R, Lou R-H, Wang Y-M, Zhang W-X, Chen H-Z, Huang Q-S, Han Y-X, Jiang J-D, You X-F (2007) In vitro activity of recombinant lysostaphin against Staphylococcus aureus isolates from hospitals in Beijing, China. Journal of Medical Microbiology 56 (1): 71-76. DOI: 10.1099/jmm.0.46788-0