Difference between revisions of "Team:OUC-China/Description"

Line 1: Line 1:
 
{{OUC-China}}
 
{{OUC-China}}
 
<html>
 
<html>
 +
<head>
 
   <meta charset="UTF-8">
 
   <meta charset="UTF-8">
 
   <meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1, user-scalable=no">
 
   <meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1, user-scalable=no">
Line 6: Line 7:
 
   <link rel="stylesheet" href="https://2016.igem.org/Team:OUC-China/css/bootstrap-min?action=raw&amp;ctype=text/css">
 
   <link rel="stylesheet" href="https://2016.igem.org/Team:OUC-China/css/bootstrap-min?action=raw&amp;ctype=text/css">
 
   <link rel="stylesheet" href="https://2016.igem.org/Team:OUC-China/css/ouc_wiki?action=raw&amp;ctype=text/css">
 
   <link rel="stylesheet" href="https://2016.igem.org/Team:OUC-China/css/ouc_wiki?action=raw&amp;ctype=text/css">
   <link rel="stylesheet" href="https://2016.igem.org/Team:OUC-China/css/index?action=raw&amp;ctype=text/css">
+
   <link rel="stylesheet" href="https://2016.igem.org/Team:OUC-China/css/affix?action=raw&amp;ctype=text/css">
 
   <script type="text/javascript" src="https://2016.igem.org/Team:OUC-China/js/jquery?action=raw&amp;ctype=text/javascript"></script>
 
   <script type="text/javascript" src="https://2016.igem.org/Team:OUC-China/js/jquery?action=raw&amp;ctype=text/javascript"></script>
 
   <script type="text/javascript" src="https://2016.igem.org/Team:OUC-China/js/bootstrap?action=raw&amp;ctype=text/javascript"></script>
 
   <script type="text/javascript" src="https://2016.igem.org/Team:OUC-China/js/bootstrap?action=raw&amp;ctype=text/javascript"></script>
   <title>Home</title>
+
   <title>Introduction</title>
 
<style type="text/css">
 
<style type="text/css">
 
         .banner-top{
 
         .banner-top{
Line 34: Line 35:
  
 
     .oucBanner{background:url('https://static.igem.org/mediawiki/2016/e/ee/T--OUC-China--banner.fw.png');}
 
     .oucBanner{background:url('https://static.igem.org/mediawiki/2016/e/ee/T--OUC-China--banner.fw.png');}
.oucNav{background:url('https://static.igem.org/mediawiki/2016/d/d0/T--OUC-China--nav-1.fw.png');}
+
.oucNav{background:url(https://static.igem.org/mediawiki/2016/d/d0/T--OUC-China--nav-1.fw.png);}
 
ul[class=dropdown-menu]{background:url(https://static.igem.org/mediawiki/2016/d/d0/T--OUC-China--nav-1.fw.png);}
 
ul[class=dropdown-menu]{background:url(https://static.igem.org/mediawiki/2016/d/d0/T--OUC-China--nav-1.fw.png);}
  
  
 
</style>
 
</style>
 +
<script type="text/javascript">
 +
 +
 +
  $(function(){
 +
  var AllHet = $(window).height();
 +
  var mainHet= $("#myNav").height();
 +
  var fixedTop = (AllHet - mainHet)/2
 +
//  $('div.floatCtro').css({top:fixedTop+'px'});
 +
  $('#myNav li').click(function(){
 +
var ind = $('#myNav li').index(this)+1;
 +
var topVal = $('#float0'+ind).offset().top;
 +
$('body,html').animate({scrollTop:topVal},1000)
 +
})
 +
$('#BtnTop').click(function(){
 +
$('body,html').animate({scrollTop:0},1000)
 +
})
 +
  $(window).scroll(scrolls)
 +
  scrolls()
 +
  function scrolls(){
 +
  var f1,f2,f3,f4,bck;
 +
  var fixRight = $('#myNav li');
 +
  var blackTop = $('#BtnTop')
 +
  var sTop = $(window).scrollTop();
 +
  fl = $("#float01").offset().top;
 +
  f2 = $("#float02").offset().top;
 +
  f3 = $("#float03").offset().top;
 +
  f4 = $("#float04").offset().top;
 +
  f5 = $("#float05").offset().top;
 +
  f6 = $("#float06").offset().top;
 +
 
 +
 +
  if(sTop<=f2-100){
 +
  blackTop.fadeOut(300).css('display','none')
 +
  }
 +
  else{
 +
  blackTop.fadeIn(300).css('display','block')
 +
  }
 +
  if(sTop>=fl){
 +
  fixRight.eq(0).addClass('active').siblings().removeClass('active');
 +
  }
 +
  if(sTop>=f2-100){
 +
  fixRight.eq(1).addClass('active').siblings().removeClass('active');
 +
  }
 +
  if(sTop>=f3-100){
 +
  fixRight.eq(2).addClass('active').siblings().removeClass('active');
 +
  }
 +
  if(sTop>=f4-100){
 +
  fixRight.eq(3).addClass('active').siblings().removeClass('active');
 +
  }
 +
  if(sTop>=f5-100){
 +
  fixRight.eq(4).addClass('active').siblings().removeClass('active');
 +
  }
 +
  if(sTop>=f6-100){
 +
  fixRight.eq(5).addClass('active').siblings().removeClass('active');
 +
  }
 +
    }
 +
  })
 +
 +
</script>
 +
 +
 
</head>  
 
</head>  
<body>  
+
<body data-spy="scroll" data-target="#myScrollspy">  
 
<div class="container">
 
<div class="container">
<nav class="oucNav navbar navbar-default navbar-fixed-top" role="navigation">  
+
<nav class="oucNav navbar navbar-default navbar-fixed-top" role="navigation">
 
<div class="container">
 
<div class="container">
 
<div class="navbar-header">  
 
<div class="navbar-header">  
Line 56: Line 118:
 
<div class="collapse navbar-collapse" id="example-navbar-collapse">  
 
<div class="collapse navbar-collapse" id="example-navbar-collapse">  
 
  <ul class="nav navbar-nav" id="oucNav">  
 
  <ul class="nav navbar-nav" id="oucNav">  
<li class="active"><a href="https://2016.igem.org/Team:OUC-China">Home</a></li>
+
<li><a href="https://2016.igem.org/Team:OUC-China">Home</a></li>
 
<li class="dropdown"><a class="dropdown-toggle" data-toggle="dropdown" href="#">Project<span class="caret"></span></a>
 
<li class="dropdown"><a class="dropdown-toggle" data-toggle="dropdown" href="#">Project<span class="caret"></span></a>
 
<ul class="dropdown-menu">
 
<ul class="dropdown-menu">
<li><a href="https://2016.igem.org/Team:OUC-China/Project">Introduction</a></li>
+
<li class="active"><a href="https://2016.igem.org/Team:OUC-China/Description">Description</a></li>
 
<li><a href="https://2016.igem.org/Team:OUC-China/Design">Design</a></li>
 
<li><a href="https://2016.igem.org/Team:OUC-China/Design">Design</a></li>
 
<li><a href="https://2016.igem.org/Team:OUC-China/Proof">Proof of concept </a></li>
 
<li><a href="https://2016.igem.org/Team:OUC-China/Proof">Proof of concept </a></li>
Line 105: Line 167:
 
</div>
 
</div>
 
</nav>
 
</nav>
<div id="carousel-example-generic" class="carousel slide" data-ride="carousel">
+
<div class="clearfix"></div>
  <!-- Indicators -->
+
        <div class="img_banner"><img src="https://static.igem.org/mediawiki/2016/5/5f/T--OUC-China--project-banner.jpg" class="img-responsive" alt="project-banner"></div>
  <ol class="carousel-indicators" style="left:20%;margin:0 auto;">
+
<div class="row">
<li data-target="#carousel-example-generic" data-slide-to="0" class="active"></li>
+
<div class="col-md-3" id="myScrollspy">
<li data-target="#carousel-example-generic" data-slide-to="1"></li>
+
<ul class="" data-spy="affix" data-offset-top="225" data-offset-bottom="150" id="myNav">
<li data-target="#carousel-example-generic" data-slide-to="2"></li>
+
<li class="active"><a href="#float01"><span style="font-family:'Lucida Calligraphy';font-size:22px;">W</span>here we started</a></li>
<li data-target="#carousel-example-generic" data-slide-to="3"></li>
+
<li><a href="#float02"><span style="font-family:'Lucida Calligraphy';font-size:22px;">L</span>ook closely to the existing strategies</a></li>
<li data-target="#carousel-example-generic" data-slide-to="4"></li>
+
<li><a href="#float03"><span style="font-family:'Lucida Calligraphy';font-size:22px;">I</span>nspiration from Nature</a></li>
  </ol>
+
<li><a href="#float04"><span style="font-family:'Lucida Calligraphy';font-size:22px;">F</span>ocus on the deep mechanism</a></li>
 
+
<li><a href="#float04"><span style="font-family:'Lucida Calligraphy';font-size:22px;">O</span>ur creative design</a></li>
  <!-- Wrapper for slides -->
+
<li><a href="#float04"><span style="font-family:'Lucida Calligraphy';font-size:22px;">F</span>urther application</a></li>
  <div class="carousel-inner" role="listbox">
+
<a id="BtnTop">
<div class="item active">
+
<img src="https://static.igem.org/mediawiki/2016/d/d2/T--OUC-China--btt.png" alt="Back to top">
<img src="https://static.igem.org/mediawiki/2016/5/5c/T--OUC-China--index-5.JPG" alt="img-1">  
+
</a>
 +
</ul>
 +
</div>
 +
<div class="col-md-9 hpMain">
 +
<br id="float01">
 +
<br>
 +
<h3 class="text-center">WHERE WE STARTED</h3>
 +
<p>In synthetic biology, microorganisms with modified metabolic pathways are employed as a reaction vessel to natural or unnatural products. It involves the introduction of several genes encoding the enzymes of a metabolic pathway[1,2]. Indeed, pathway optimization requires to adjust expression of multiple genes at appropriately balanced levels, for example the synthesic of poly(3-hydroxybutyrate)[3] and Mevalonate[4].Similarly, manipulation of multisubunit proteins (for example F1F0-ATPase ) also requires coordinated expression of several genes to produce the subunits at the appropriate stoichiometries[5]. As is done in the prokaryotes, grouping a cluster of gene s into a single polycistron is a convenient mean for regulating genes simultaneously. Thus, for the sake of tuning the expressions of genes within polycistrons, we aim to develop a tightly regulated, predictable components –stem-loop to realize cistron concerto</p>
 +
<br id="float02">
 +
<br>
 +
<h3 class="text-center">LOOK CLOSELT TO THE EXISTING STRATEGIES</h3>
 +
<p>As a matter of fact, regulation of gene expression includes a wide range of strategies that are used by synthetic scientists, for examples copy number, promoters and RBS[6]. Despite their prominent advantages, it is nearly impossible to predict the necessary strengths of the promoters and ribosome binding sites (RBSs) to balance and coordinate the expression of multiple genes[7].What’s more, when traditional cloning is utilized, constructing libraries of  hundreds of configurations of pathway genes with varying copy number, promoter, and RBS strengths is a daunting and time consuming task even for small pathways[8].</p>
 +
<div class="row">
 +
<div class="col-md-2"></div>
 +
<div class="col-md-8">
 +
<img src="https://static.igem.org/mediawiki/2016/8/8b/T--OUC-China--pr-2-1.png" class="img-responsive" alt="Regulatory strategies">
 +
</div>
 +
<div class="col-md-2"></div>
 +
</div>
 +
<p>Ergo, we are enlightened to try a rational design of one regulatory element to mainly reduce the number of trials and transform it into a user-friendly kit. We mainly focus on the prior design of the DNA sequences to work on the post- transcriptional level which can directly determine the relative levels of gene expression. Thus, stem-loop catches our attention.</p>
 +
<br id="float03">
 +
<hr>
 +
<h3 class="text-center">INSPIRATION FROM NATURE</h3>
 +
<p>Nature is uncanny workmanship. Recently, in <i>C. cellulolyticum</i>, within an polycistron encoding  cellulosome, Xu reported that stem-loop structures associated with those intergenic post-transcriptional processed sites located at 3’ termini of highly transcribed genes exhibit folding free energy negatively correlated with transcript-abundance ratio of flanking genes[9]. Thus we consider the possibility of stem loops inserted in the intergenic region for tuning expression in <i>E.coli</i> which is more widely utilized as an engineered strain.<br>Fortunately, Keasling has identified that stem loops function well in the post-transcriptional process in <i>E.coli</i>[10], confirmed our thinking. Thus, we decided to develop stem loops with different free folding energy inserted in the intergenic region of two genes to coordinate expressions.</p>
 +
<br id="float04">
 +
<hr>
 +
<h3 class="text-center">FOCUS ON THE DEEP MECHANISM</h3>
 +
<div class="row">
 +
<div class="col-md-2"></div>
 +
<div class="col-md-8">
 +
<img src="https://static.igem.org/mediawiki/2016/9/9e/T--OUC-China--pr-2-2.jpg" class="img-responsive" alt="Mechanism model">
 +
</div>
 +
<div class="col-md-2"></div>
 
</div>
 
</div>
<div class="item">
+
<p>The operon is transcribed by its sole promoter and the primary transcript is cleaved into several secondary transcripts by RNase E, a single-stranded, nonspecific endonuclease with preference for cleaving A/U-rich sequence . However, the stability of these secondary transcripts against exonuclease degradation from the 3’ end varied due to their distinct terminal structure. When stem loops inserted in the 3’ end of the upstream gene, it protects its mRNA against the cleavage of exonuclease, increasing the ratio of abundance of the first gene product relative to that of the second gene product. Furthermore, the lower free energy of stem loops are, the more stable the secondary transcripts of the upstream are, tuning the expression of multiple genes.</p>
<img src="https://static.igem.org/mediawiki/2016/c/c1/T--OUC-China--index-2.JPG" alt="img-2">
+
<br id="float05">
 +
<hr>
 +
<h3 class="text-center">OUR CREATIVE DESIGN</h3>
 +
<p>For further developing stem loops as useful regulatory parts, we racked our brains and  divided our project into two parts. First we exploited stem loops as new parts to tune the expression and transformed it into a user-friendly toolkit. SOLID data are carried out to confirmed its function. And then we explored more of this novel regulation method though modeling and software. More details in <a href="https://2016.igem.org/Team:OUC-China/Design">Design</a></p>
 +
<div class="row">
 +
<div class="col-md-2"></div>
 +
<div class="col-md-8">
 +
<img src="https://static.igem.org/mediawiki/2016/7/73/T--OUC-China--pr-2-3.png" class="img-responsive" alt="Project idea">
 +
</div>
 +
<div class="col-md-2"></div>
 
</div>
 
</div>
<div class="item">
+
<br id="float06">
  <img src="https://static.igem.org/mediawiki/2016/2/2a/T--OUC-China--index-1.JPG" alt="img-3">
+
<hr>
</div>
+
<h3 class="text-center">FURTHER APPLICATION</h3>
<div class="item">
+
<p>After <a href="https://2016.igem.org/Team:OUC-China/Potential_application">visiting some local industrial enterprises</a>, we aimed to devoted our design into a practical industrial production, for improving product titers, yields, and productivity. In the fermentation of beer, the regulation of GSH, a reducing substance that is resistant to beer aging, contributes to increase the productivity of beer. GSH is composed of two subunits GSHⅠand GSHⅡ. Regulating the ratio of GSHⅠand GSHⅡ at proper stoichiometries results in higher yields . Thus, we are going to insert the stem loops with required free folding energy into the coding genes GSHⅠand GSHⅡto coordinate their relative expressions.</p>
  <img src="https://static.igem.org/mediawiki/2016/a/a2/T--OUC-China--index-3.JPG" alt="img-4">
+
<br>
</div>
+
<br>
<div class="item">
+
<h4 class="text-center">REFERENCE</h4>
  <img src="https://static.igem.org/mediawiki/2016/5/54/T--OUC-China--index-4.JPG" alt="img-5">
+
<p style="font-size:16px;">[1]. Khosla, C. & Keasling, J.D. Metabolic engineering for drug discovery and development.Nat. Rev. Drug Discov. 2, 1019–1025 (2003).<br>[2]. Martin, V.J., Pitera, D.J., Withers, S.T., Newman, J.D. & Keasling, J.D. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat. Biotechnol. 21, 796–802 (2003).<br>[3]. Li T, Ye J, Shen R, et al. Semi-rational approach for ultra-high poly (3-hydroxybutyrate) accumulation in Escherichia coli by combining one-step library construction and high-throughput screening[J]. ACS synthetic biology, 2016.<br>[4]. Dudley Q M, Anderson K C, Jewett M C. Cell-Free Mixing of Escherichia coli Crude Extracts to Prototype and Rationally Engineer High-Titer Mevalonate Synthesis[J]. ACS Synthetic Biology, 2016.<br>[5]. White, M.M. Pretty subunits all in a row: using concatenated subunit constructs to force the expression of receptors with defined stoichiometry and spatial arrangement. Mol. Pharmacol. 69, 407–410 (2006).<br>[6]. Song C W, Lee J, Ko Y S, et al. Metabolic engineering of Escherichia coli for the production of 3-aminopropionic acid[J]. Metabolic engineering, 2015, 30: 121-129.<br>[7]. Pfleger B F, Pitera D J, Smolke C D, et al. Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes[J]. Nature biotechnology, 2006, 24(8): 1027-103<br>[8]. Jones, J.A., O.D. Toparlak, and M.A. Koffas, Metabolic pathway balancing and its role in the production of biofuels and chemicals. Curr Opin Biotechnol, 2015. 33: p. 52-9<br>[9]. Xu C, Huang R, Teng L, et al. Cellulosome stoichiometry in Clostridium cellulolyticum is regulated by selective RNA processing and stabilization[J]. Nature communications, 2015, 6.<br>[9]. Smolke C D, Keasling J D. Effect of gene location, mRNA secondary structures, and RNase sites on expression of two genes in an engineered operon[J]. Biotechnology and bioengineering, 2002, 80(7): 762-776.<br>[10]. Mackie, George A. "RNase E: at the interface of bacterial RNA processing and decay." Nature Reviews Microbiology 11.1 (2013): 45-57.<br>[10]. Liao X Y, Shen W, Chen J, et al. Improved glutathione production by gene expression in Escherichia coli[J]. Letters in Applied Microbiology, 2006, 43(2):211-214.</p>
</div>
+
  </div>
+
 
+
  <!-- Controls -->
+
  <a class="left carousel-control" href="#carousel-example-generic" role="button" data-slide="prev">
+
<img src="https://static.igem.org/mediawiki/2016/5/50/T--OUC-China--index-left.png" style="margin-top:100%" alt="Slide Left">
+
                                <span class="sr-only"></span>
+
  </a>
+
  <a class="right carousel-control" href="#carousel-example-generic" role="button" data-slide="next">
+
<img src="https://static.igem.org/mediawiki/2016/f/f7/T--OUC-China--index-right.png" style="margin-top:100%" alt="Slide Right">
+
<span class="sr-only"></span>
+
  </a>
+
</div>
+
<div class="oucAbstract row">
+
<div class="col-md-5">
+
<img src="https://static.igem.org/mediawiki/2016/0/0c/T--OUC-China--ab-icon1.png" class="img-responsive" alt="icon">
+
</div>
+
<div class="col-md-2">
+
<h3 class="text-center">ABSTRACT</h3>
+
</div>
+
<div class="col-md-5">
+
<img src="https://static.igem.org/mediawiki/2016/d/d4/T--OUC-China--ab-icon2.png" class="img-responsive" alt="icon">
+
</div>
+
                        <div class="clearfix"></div>
+
<div class="text-center">
+
<p>As is known, once forming stem-loops, the oligonucleotides will be more stable than the single-stranded ones. And mRNA with stem-loop at its 3’ or 5’ end often get a longer lifetime than the linear one owe to the stem-loop’s resistance to exonuclease. Our team tend to design a series of stem-loops each followed by the same endonuclease site and are transcribed as one polycistron. Once digested by endonuclease and seperate into several independent fragments, cistrons with different ∆G stem-loops will get different stability, thus influence the amount of expressed proteins. In this way, we can decouple the expression level of upstream and downstream genes of the same operon by simply designing different stem-loops. Futhermore, with quantitative ∆G of stem-loops, we even can achieve the ratio expression of target proteins. It is a creative regulating method and we attempt to provide a series of standard regulation parts for others.</p>
+
 
</div>
 
</div>
</div>
 
<div class="oucMovie" style="background:url('https://static.igem.org/mediawiki/2016/9/99/T--OUC-China--movie-1.fw.png');width:100%;height:400px;">
 
<video src="https://static.igem.org/mediawiki/2016/d/de/T--OUC-China--Video1.mp4" controls="controls" width="100%" height="400" style="margin:0 auto;">
 
your browser does not support the video tag
 
</video>
 
</div>
 
<div class="oucMenu row">
 
<div class="col-xs-4">
 
<a href="https://2016.igem.org/Team:OUC-China/Design"><img src="https://static.igem.org/mediawiki/2016/1/1d/T--OUC-China--menu-icon-2.fw.png" class="img-responsive" alt="Principle"><p class="text-center" style="margin-top:20px;">Design</p></a>
 
</div>
 
<div class="col-xs-4">
 
<a href="https://2016.igem.org/Team:OUC-China/Collaborations"><img src="https://static.igem.org/mediawiki/2016/8/8a/T--OUC-China--menu-icon-4.fw.png" class="img-responsive" alt="Attrbution"><p class="text-center" style="margin-top:20px;">Collaborations</p></a>
 
</div>
 
<div class="col-xs-4">
 
<a href="https://2016.igem.org/Team:OUC-China/Human_Practices"><img src="https://static.igem.org/mediawiki/2016/0/04/T--OUC-China--menu-icon-6.fw.png" class="img-responsive" alt="Human Practices"><p class="text-center" style="margin-top:20px;">Human Practices</p></a>
 
</div>
 
<div class="clearfix"></div>
 
<div class="col-xs-4">
 
<a href="https://2016.igem.org/Team:OUC-China/Model"><img src="https://static.igem.org/mediawiki/2016/4/41/T--OUC-China--menu-icon-1.fw.png" class="img-responsive" alt="Purpose"><p class="text-center" style="margin-top:20px;">Safety</p></a>
 
</div>
 
<div class="col-xs-4">
 
<a href="https://2016.igem.org/Team:OUC-China/Team"><img src="https://static.igem.org/mediawiki/2016/a/ad/T--OUC-China--menu-icon-5.fw.png" class="img-responsive" alt="Team"><p class="text-center" style="margin-top:20px;">Team</p></a>
 
</div>
 
<div class="col-xs-4">
 
<a href="https://2016.igem.org/Team:OUC-China/Software"><img src="https://static.igem.org/mediawiki/2016/0/07/T--OUC-China--menu-icon-3.fw.png" class="img-responsive" alt="Potential"><p class="text-center" style="margin-top:20px;">Model</p></a>
 
</div>
 
<div class="clearfix"></div>
 
 
 
</div>
 
</div>
 
<div class="oucBanner">
 
<div class="oucBanner">
Line 193: Line 242:
 
<div class="col-md-1"></div>
 
<div class="col-md-1"></div>
 
<div class="col-md-5">
 
<div class="col-md-5">
<h3>Thanks:</h3>
+
<h3>Thanks:</h3>
 
<p>1.Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences</p>
 
<p>1.Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences</p>
 
<p>2.NEW ENGLAND Biolabs</p>
 
<p>2.NEW ENGLAND Biolabs</p>
Line 199: Line 248:
 
</div>
 
</div>
 
<div class="col-md-5 Contact">
 
<div class="col-md-5 Contact">
<h3>Contact us:</h3>
+
<h3>Contact us:</h3>
 
<p><b>E-mail</b>: oucigem@163.com</p>
 
<p><b>E-mail</b>: oucigem@163.com</p>
 
<p><b>Designed and built</b> by @ Jasmine Chen and @ Zexin Jiao</p>
 
<p><b>Designed and built</b> by @ Jasmine Chen and @ Zexin Jiao</p>
Line 209: Line 258:
 
</div>
 
</div>
 
<div class="oucBottom">
 
<div class="oucBottom">
</div>
+
</div>
 
</div>
 
</div>
  
 
</body>  
 
</body>  
 
 
</html>
 
</html>

Revision as of 20:44, 19 October 2016

Introduction

project-banner


WHERE WE STARTED

In synthetic biology, microorganisms with modified metabolic pathways are employed as a reaction vessel to natural or unnatural products. It involves the introduction of several genes encoding the enzymes of a metabolic pathway[1,2]. Indeed, pathway optimization requires to adjust expression of multiple genes at appropriately balanced levels, for example the synthesic of poly(3-hydroxybutyrate)[3] and Mevalonate[4].Similarly, manipulation of multisubunit proteins (for example F1F0-ATPase ) also requires coordinated expression of several genes to produce the subunits at the appropriate stoichiometries[5]. As is done in the prokaryotes, grouping a cluster of gene s into a single polycistron is a convenient mean for regulating genes simultaneously. Thus, for the sake of tuning the expressions of genes within polycistrons, we aim to develop a tightly regulated, predictable components –stem-loop to realize cistron concerto



LOOK CLOSELT TO THE EXISTING STRATEGIES

As a matter of fact, regulation of gene expression includes a wide range of strategies that are used by synthetic scientists, for examples copy number, promoters and RBS[6]. Despite their prominent advantages, it is nearly impossible to predict the necessary strengths of the promoters and ribosome binding sites (RBSs) to balance and coordinate the expression of multiple genes[7].What’s more, when traditional cloning is utilized, constructing libraries of hundreds of configurations of pathway genes with varying copy number, promoter, and RBS strengths is a daunting and time consuming task even for small pathways[8].

Regulatory strategies

Ergo, we are enlightened to try a rational design of one regulatory element to mainly reduce the number of trials and transform it into a user-friendly kit. We mainly focus on the prior design of the DNA sequences to work on the post- transcriptional level which can directly determine the relative levels of gene expression. Thus, stem-loop catches our attention.



INSPIRATION FROM NATURE

Nature is uncanny workmanship. Recently, in C. cellulolyticum, within an polycistron encoding cellulosome, Xu reported that stem-loop structures associated with those intergenic post-transcriptional processed sites located at 3’ termini of highly transcribed genes exhibit folding free energy negatively correlated with transcript-abundance ratio of flanking genes[9]. Thus we consider the possibility of stem loops inserted in the intergenic region for tuning expression in E.coli which is more widely utilized as an engineered strain.
Fortunately, Keasling has identified that stem loops function well in the post-transcriptional process in E.coli[10], confirmed our thinking. Thus, we decided to develop stem loops with different free folding energy inserted in the intergenic region of two genes to coordinate expressions.



FOCUS ON THE DEEP MECHANISM

Mechanism model

The operon is transcribed by its sole promoter and the primary transcript is cleaved into several secondary transcripts by RNase E, a single-stranded, nonspecific endonuclease with preference for cleaving A/U-rich sequence . However, the stability of these secondary transcripts against exonuclease degradation from the 3’ end varied due to their distinct terminal structure. When stem loops inserted in the 3’ end of the upstream gene, it protects its mRNA against the cleavage of exonuclease, increasing the ratio of abundance of the first gene product relative to that of the second gene product. Furthermore, the lower free energy of stem loops are, the more stable the secondary transcripts of the upstream are, tuning the expression of multiple genes.



OUR CREATIVE DESIGN

For further developing stem loops as useful regulatory parts, we racked our brains and divided our project into two parts. First we exploited stem loops as new parts to tune the expression and transformed it into a user-friendly toolkit. SOLID data are carried out to confirmed its function. And then we explored more of this novel regulation method though modeling and software. More details in Design

Project idea


FURTHER APPLICATION

After visiting some local industrial enterprises, we aimed to devoted our design into a practical industrial production, for improving product titers, yields, and productivity. In the fermentation of beer, the regulation of GSH, a reducing substance that is resistant to beer aging, contributes to increase the productivity of beer. GSH is composed of two subunits GSHⅠand GSHⅡ. Regulating the ratio of GSHⅠand GSHⅡ at proper stoichiometries results in higher yields . Thus, we are going to insert the stem loops with required free folding energy into the coding genes GSHⅠand GSHⅡto coordinate their relative expressions.



REFERENCE

[1]. Khosla, C. & Keasling, J.D. Metabolic engineering for drug discovery and development.Nat. Rev. Drug Discov. 2, 1019–1025 (2003).
[2]. Martin, V.J., Pitera, D.J., Withers, S.T., Newman, J.D. & Keasling, J.D. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat. Biotechnol. 21, 796–802 (2003).
[3]. Li T, Ye J, Shen R, et al. Semi-rational approach for ultra-high poly (3-hydroxybutyrate) accumulation in Escherichia coli by combining one-step library construction and high-throughput screening[J]. ACS synthetic biology, 2016.
[4]. Dudley Q M, Anderson K C, Jewett M C. Cell-Free Mixing of Escherichia coli Crude Extracts to Prototype and Rationally Engineer High-Titer Mevalonate Synthesis[J]. ACS Synthetic Biology, 2016.
[5]. White, M.M. Pretty subunits all in a row: using concatenated subunit constructs to force the expression of receptors with defined stoichiometry and spatial arrangement. Mol. Pharmacol. 69, 407–410 (2006).
[6]. Song C W, Lee J, Ko Y S, et al. Metabolic engineering of Escherichia coli for the production of 3-aminopropionic acid[J]. Metabolic engineering, 2015, 30: 121-129.
[7]. Pfleger B F, Pitera D J, Smolke C D, et al. Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes[J]. Nature biotechnology, 2006, 24(8): 1027-103
[8]. Jones, J.A., O.D. Toparlak, and M.A. Koffas, Metabolic pathway balancing and its role in the production of biofuels and chemicals. Curr Opin Biotechnol, 2015. 33: p. 52-9
[9]. Xu C, Huang R, Teng L, et al. Cellulosome stoichiometry in Clostridium cellulolyticum is regulated by selective RNA processing and stabilization[J]. Nature communications, 2015, 6.
[9]. Smolke C D, Keasling J D. Effect of gene location, mRNA secondary structures, and RNase sites on expression of two genes in an engineered operon[J]. Biotechnology and bioengineering, 2002, 80(7): 762-776.
[10]. Mackie, George A. "RNase E: at the interface of bacterial RNA processing and decay." Nature Reviews Microbiology 11.1 (2013): 45-57.
[10]. Liao X Y, Shen W, Chen J, et al. Improved glutathione production by gene expression in Escherichia coli[J]. Letters in Applied Microbiology, 2006, 43(2):211-214.

Cistrons Concerto

Thanks:

1.Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences

2.NEW ENGLAND Biolabs

3.Genscript

Contact us:

E-mail: oucigem@163.com

Designed and built by @ Jasmine Chen and @ Zexin Jiao

We are OUC-iGEM logo-one logo-two